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Abstract

We introduce the notion of a special complex manifold: a complex manifold(M, J ) with a flat
torsionfree connection∇ such that∇J is symmetric. A special symplectic manifold is then de-
fined as a special complex manifold together with a∇-parallel symplectic formω. This generalises
Freed’s definition of (affine) special Kähler manifolds. We also define projective versions of all
these geometries. Our main result is an extrinsic realisation of all simply connected (affine or pro-
jective) special complex, symplectic and Kähler manifolds. We prove that the above three types of
special geometry are completely solvable, in the sense that they are locally defined by free holomor-
phic data. In fact, any special complex manifold is locally realised as the image of a holomorphic
one-formsα : Cn → T ∗

C
n. Such a realisation induces a canonical∇-parallel symplectic structure

onM and any special symplectic manifold is locally obtained this way. Special Kähler manifolds
are realised as complex Lagrangian submanifolds and correspond to closed formsα. Finally, we
discuss the natural geometric structures on the cotangent bundle of a special symplectic manifold,
which generalise the hyper-Kähler structure on the cotangent bundle of a special Kähler manifold.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Special Kähler manifolds have attracted a great deal of interest in both string theory and
differential geometry, since they first arose in the pioneering paper of de Wit and Van Proeyen
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[5] as the allowed target spaces for Maxwell supermultiplets coupled to four-dimensional
N = 2 supergravity. These manifolds play a crucial role as admissible target spaces for
scalar and vector couplings in bothrigid supersymmetric theories and in supergravity the-
ories, where the supersymmetry algebra is ‘locally’ realised. The special Kähler manifolds
occurring in rigid and local supersymmetric theories correspond respectively to the affine
and projective variants of special Kähler manifolds in the mathematical literature [3,4,7,8].
Special Kähler geometries, moreover, occur as natural geometric structures on certain mod-
uli spaces. Projective special Kähler manifolds occur, for example, as moduli spaces of
Calabi–Yau three-folds (see e.g. [3,4]) and affine special Kähler manifolds occur as moduli
spaces of complex Lagrangian submanifolds of hyper-Kähler manifolds [8]. Further, the
base of any algebraic integrable system is also affine special Kähler [6,7].

The purpose of this paper is to develop a unified perspective from which the various
mathematical and physical approaches to special geometry (affine versus projective, in-
trinsic versus extrinsic, definition versus construction) can be seen as different aspects of
the same structure. We introduce the notion of aspecial complex manifoldas a complex
manifold(M, J ) with a flat torsionfree connection∇ such that

d∇J = 0. (1)

We call it special symplecticif, in addition, a∇-parallel symplectic formω is specified.
Further, ifω is J -invariant, or equivalently, of type (1, 1), it is precisely aspecial Kähler
manifold in the sense of [7]. More generally, we shall see that the Hodge componentsω11,
ω20, ω02 of ω are closed (Proposition 4). If the formω11 is non-degenerate, it defines a
(pseudo) Kähler metricg = ω11 ◦ J onM and ifω11 is ∇-parallel (e.g. ifω = ω11) then
(M, J,∇, ω11) is a special Kähler manifold.

We give an extrinsic realisation of simply connected special complex, symplectic and
Kähler manifolds as immersed complex submanifolds ofT ∗

C
n. The main property of a

special complex manifold used in our construction, is that any affine functionf (i.e. a func-
tion satisfying∇df = 0) can be extended to a holomorphic functionF such that ReF =
f . In particular, for a special symplectic manifold any local affine symplectic coordinate
system(x1, . . . , xn, y1, . . . , yn) can be extended to a system of holomorphic functions
(z1, . . . , zn, w1, . . . , wn), which defines a local holomorphic immersion ofM into C2n,
such that the special symplectic structure is induced by certain canonical stuctures onC

2n.
The fundamental example of a special complex manifoldM is associated to a (local)

holomorphic one-formsα = ∑
Fi dzi onCn with invertible real matrix Im(∂Fi/∂zj ) as

follows: The complex manifoldM = Mα is the image of the sectionα : Cn → T ∗
C
n =

C
2n. The flat torsionfree connection∇ onM is defined by the condition that the real part

ReF of any complex affine functionF onC2n restricts to a∇-affine function onM. Such a
manifoldM carries a natural∇-parallel symplectic formω and can therefore be considered
as a special symplectic manifold as well. If, in addition, the one-formsα is closed (and hence
locally α = dF for a holomorphic functionF ), thenMα is a Lagrangian submanifold and
ω is of type (1, 1). SoMα is then a special Kähler manifold. Conversely, we prove that any
special complex, symplectic or Kähler manifold can be locally obtained by this construction.
More generally, we show that any totally complex holomorphic immersionφ of a complex
n-manifoldM intoC2n induces onM the structure of a special symplectic manifold. Here,
we call an immersiontotally complexif the intersection dφ (TpM)∩R2n = 0 for allp ∈ M.
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If in addition, the immersionφ is Lagrangian (i.e. dφ (TpM) is a Lagrangian subspace of
T ∗
C
n), thenM is a special Kähler manifold. Our main result is that any simply connected

special complex, symplectic or Kähler manifold can be constructed in this fashion. In
particular, any special Kähler manifold is locally defined by a holomorphic functionF . This
result is used in [1] in order to associate a parabolic affine hypersphere of real dimension
2n to any holomorphic functionF(z1, z2, . . . , zn)with invertible real matrix Im(∂Fi/∂zj ).

In Section 3, by including special complex manifolds(M, J,∇) into a one-parameter
family (M, J,∇θ ), θ ∈ S1, we define projective versions of special complex, symplectic
and Kähler manifolds in terms of an action ofC∗ onM which is transitive on this family. Our
approach is based on the following observation: Any special complex manifold(M, J,∇)
can be included in a one-parameter family(M, J,∇θ ) of special complex manifolds, with
the connection∇θ defined by

∇θX := eθJ∇(e−θJX), (2)

where eθJX = ( cosθ)X + ( sin θ)JX. A complex manifold(M, J ) with a flat torsionfree
connection∇ is called aconic complex manifoldif it admits a local holomorphicC∗-action
ϕλ with differential dϕλ X = reθJX for all ∇-parallel (local) vector fieldsX, whereλ =
reiθ . This impliesϕ∗

λ∇ = ∇θ . We show that a conic complex manifold is automatically
special.

Assume that the manifoldMα ⊂ T ∗
C
n, α = ∑

Fi dzi , is a complex cone, i.e. it is
invariant under complex scalings. This is the case when the coefficient functionsFi are
homogeneous of degree one. The induced special geometry onMα is then conic. Conversely,
we prove that any conic (special) complex, symplectic or Kähler manifold can be locally
realised as such a cone. In particular, any conic special Kähler manifold is locally described
by the differentialα = dF of a holomorphic homogeneous functionF of degree two. In
the simply connected case, we give a global description of conic special manifolds in terms
of holomorphic immersions.

We then define a projective special complex, symplectic or Kähler manifold as the orbit
spaceM̄ of a conic complex, symplectic or Kähler manifoldM by the localC∗-action,
assuming thatM̄ is a (Hausdorff) manifold. From the realisation of simply connected
conic manifolds as immersed submanifolds ofT ∗

C
n, we obtain an analogous realisation

of projective special manifolds as immersed submanifolds of complex projective space
P(T ∗

C
n). From this it follows that our definition of projective special Kähler manifolds is

consistent with that given by Freed [7].
Finally, we discuss the natural geometric structures on the cotangent bundle of a special

symplectic manifold, which are generalisations of the known hyper-Kähler structure on
the cotangent bundle of a special Kähler manifold [2,4,7,8]. We prove that the cotangent
bundleN = T ∗M of a special symplectic manifoldM carries two canonical complex
structures: the standard complex structureJ1 induced byJ and a complex structureJω,
defined byω and∇. If the formω11 is non-degenerate, thenN = T ∗M carries also a natural
almost hyper-Hermitian structure(J1, J2, gN), i.e. a Riemannian metricgN (which is an
extension of the Kähler metricg = ω11◦J ) and two anticommutinggN -orthogonal almost
complex structuresJ1, J2. This almost hyper-Hermitian structure is integrable, i.e.J1 and
J2 are integrable, if and only ifω11 is ∇-parallel. In this case(J1, J2, gN) is a hyper-Kähler
structure and we recover the known hyper-Kähler structure on the cotangent bundle of a
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special Kähler manifold. Similarly, ifω′ = ω20 + ω02 is non-degenerate, thenN = T ∗M
carries a natural almost para-hypercomplex structure1 , that is a pair(J1, J2) of commuting
almost complex structures. Here,J1 is the standard integrable complex structure andJ2 is
integrable if and only if the formω′ is ∇-parallel.

2. Affine: special geometry

2.1. Special manifolds

Definition 1. A special complex manifold(M, J,∇) is a complex manifold(M, J ) together
with a flat torsionfree connection∇ (on its real tangent bundle) such that

d∇J = 0.

Here, the complex structureJ is considered as a one-forms with values inTM andd∇
denotes the covariant exterior derivative defined by∇.

A special symplectic manifold(M, J,∇, ω) is a special complex manifold(M, J,∇)
together with a∇-parallel symplectic structureω.

A special Kähler manifold is a special symplectic manifold(M, J,∇, ω) for whichω is
J -invariant, i.e. of type (1, 1). The (pseudo-)Kähler metricg(·, ·) := ω(J ·, ·) is called the
special Kähler metric of the special Kähler manifold(M, J,∇, ω).

Remark 1. The evaluation of theTM-valued two-formsd∇J = alt(∇J ) on two tangent
vectorsX andY is given by

d∇J (X, Y ) = (∇XJ )Y − (∇Y J )X.

Remark 2. Since, we do not assume the definiteness of the metric, it would be more
accurate to speak of special pseudo-Kähler manifolds/metrics. However, as the signature of
the metric is not relevant for our present discussion, we shall omit the prefix pseudo.

Given a linear connection∇ on a manifoldM and an invertible endomorphism fieldA
on a manifoldM, we denote by∇(A) the connection defined by

∇(A)X = A∇(A−1X).

Given a flat connection∇ on (the real tangent bundle of) a complex manifold(M, J ), we
define a one-parameter family of connections∇θ = ∇(eθJ ) parametrised by the projective
line P 1 = R/πZ, where eθJ = ( cosθ)Id + ( sinθ)J . The connection∇θ is flat, since

∇θX = 0 ⇔ ∇(e−θJX) = 0,

whereX is a local vector field onM.

1 The notion of para-hypercomplex structure used in this paper, involving two commuting complex structures
and one involution (the productJ1 J2), is a variant of the more standard notion consisting of two anticommuting
involutions and one complex structure.
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Lemma 1. Let∇ be a flat connection with torsionT on a complex manifold(M, J ). Then

∇θ = ∇ + Aθ, where Aθ = eθJ ∇(e−θJ ) = −( sinθ)eθJ ∇J.
The torsionT θ of the connection∇θ is given by

T θ = T + alt(Aθ ) = T − ( sinθ)eθJ d∇J. (3)

Proposition 1. Let∇ be a flat torsionfree connection on a complex manifold(M, J ). Then
the triple(M, J,∇) defines a special complex manifold if and only if one of the following
equivalent conditions holds:

(a) d∇J = 0.
(b) The flat connection∇θ is torsionfree for someθ ≡ 0 (modπZ).
(b′) The flat connection∇θ is torsionfree for allθ .
(c) There existsθ �≡ 0 (modπZ) such that[eθJX,eθJ Y ] = 0 for all ∇-parallel local

vector fieldsX andY onM.
(c′) [eθJX,eθJ Y ] = 0 for all θ and all∇-parallel local vector fieldsX andY onM.
(d) There existsθ �≡ 0 (modπZ) such thatd(ξ ◦ e−θJ ) = 0 for all ∇-parallel local

one-formsξ onM.
(d′) d(ξ ◦ e−θJ ) = 0 for all θ and all∇-parallel local one-formsξ onM.

Proof. Part (a) is the property defining special complex manifolds. Since,∇ is torsionfree,
the torsionT θ of ∇θ is related tod∇J in virtue of(3) by

T θ = −( sinθ)eθJ d∇J.

If θ �≡ 0 (modπZ) the endomorphism( sinθ)eθJ is invertible. This implies the equivalence
of (a), (b) and (b′). LetX andY be∇-parallel local vector fields. Then eθJX and eθJ Y are
∇θ -parallel, by the definition of∇θ , and hence

T θ (eθJX,eθJ Y ) = −[eθJX,eθJ Y ].

This yields (b)⇔ (c) and (b′) ⇔ (c′). For a∇-parallel local one-formsξ andX, Y as above,
we compute

d(ξ ◦ e−θJ )(eθJX,eθJ Y )= −ξ(e−θJ [eθJX,eθJ Y ])+ eθJXξ(Y )− eθJXξ(X)

= −ξ(e−θJ [eθJX,eθJ Y ])

since the functionsξ(X) andξ(Y ) are constant. This proves the equivalences (c)⇔ (d) and
(c′) ⇔ (d′), completing the proof of the proposition. �

Given a complex manifold(M, J ) with a flat connection∇, we say that the connection

∇π/2 = ∇(e(π/2)J ) = ∇(J ) = ∇ − J∇J
is its conjugate connection.

Corollary 1. Let (M, J ) be a complex manifold with a flat torsionfree connection∇. Then
the following are equivalent:
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(a) (M, J,∇) is a special complex manifold.
(b) The conjugate flat connection∇(J ) is torsionfree.
(c) [JX, JY] = 0 for all ∇-parallel local vector fieldsX andY onM.
(d) d(ξ ◦ J ) = 0 for all ∇-parallel local one-formsξ onM.

Corollary 2. If (M, J,∇) is a special complex manifold then(M, J,∇θ ) is a special
complex manifold for anyθ . If (M, J,∇, ω) is a special Kähler manifold then(M, J,∇θ , ω)

is a special Kähler manifold for anyθ .

The Proposition 2 shows that any special complex manifold also has a canonical torsionfree
complexconnection, which in general is not flat.

Proposition 2. Let (M, J,∇) be a special complex manifold. ThenD := 1
2(∇ + ∇(J ))

defines a torsionfree connection such that DJ= 0.

Proof. As a convex combination of torsionfree connections,D is a torsionfree connection.
For any vector fieldX onM we compute

DXJ = ∇XJ − 1

2
[J∇XJ, J ] = ∇XJ − ∇XJ = 0. �

Proposition 3. Let (M, J,∇, ω) be a special Kähler manifold with special Kähler metric
g and Levi-Civita connection∇g. Then the following hold:

(i) ∇g = D = 1
2(∇ + ∇(J )).

(ii) The conjugate connection∇(J ) is g-dual to∇, i.e.

Xg(Y, Z) = g(∇XY,Z)+ g(Y,∇(J )
X Z)

for all vector fieldsX, Y andZ onM.
(iii) The tensor∇g is completely symmetric.

Proof. Part (i) is an immediate consequence of Proposition 2, sinceg = ω(·, J ·). Part
(ii) follows from a direct computation, which only uses the fact thatω is ∇-parallel and
J -invariant:

Xg(Y, Z)=Xω(Y, JZ) = ω(∇XY, JZ)+ ω(Y,∇XJZ)

= g(∇XY,Z)+ ω(JY, J∇XJZ) = g(∇XY,Z)+ g(Y,∇(J )
X Z).

Finally, to prove (iii) it is sufficient to check that∇g is symmetric in the first two arguments:

(∇Xg)(Y, Z)− (∇Y g)(X,Z)

= Xg(Y, Z)− g(∇XY,Z)− g(Y,∇XZ)− Yg(X,Z)+ g(∇YX,Z)+ g(X,∇YZ)

= −g(∇XY,Z)+ g(∇(J )
X Y, Z)+ g(∇YX,Z)− g(∇(J )

Y X,Z)

= g(−[X, Y ] + [X, Y ], Z) = 0. �
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Proposition 4. Let(M, J,∇, ω)be a special symplectic manifold andω = ω11+ω20+ω02

the Hodge decomposition of the symplectic form. Then each of the componentsω11, ω20,
ω02 are closed.

Proof. It is sufficient to check that the (1, 1)-componentω11 = (1/2)(ω + ω(J ·, J ·)) is
closed. Since∇ has no torsion, the exterior derivative is given by d= alt ◦ ∇. We compute

2dω11 = d(ω + ω(J ·, J ·)) = alt ◦ ∇ω(J ·, J ·).
Since∇ω = 0 for anyX1, X2, X3 ∈ TpM we obtain, using d∇J = 0,

2dω11(X1, X2, X3)= 1

3
(ω((∇X1J )X2, JX3)+ ω(JX2, (∇X1J )X3)+ cycl.)

= 1

3
(ω((∇X1J )X2, JX3)+ ω(JX2, (∇X3J )X1)+ cycl.),

= 1

3
(ω((∇X1J )X2, JX3)− ω((∇X3J )X1, JX2)+ cycl.) = 0. �

Proposition 5. Let (M, J,∇, ω) be a special symplectic manifold and assume thatω11 is
non-degenerate. Then(M, J, ω11) is a Kähler manifold with Kähler metricg = ω11(J ·, ·).
(M, J,∇, ω11) is special Kähler if and only if∇ω11 = 0.

Proof. It is clear thatg is a Hermitian metric on the complex manifold(M, J ). By Propo-
sition 4 the Kähler formω11 of g is closed and, hence,(M, J, g) is a Kähler manifold. The
last statement is obvious. �

2.2. Special coordinates

A flat torsionfree connection∇ on a manifoldM defines on it anaffine structure, i.e.
an atlas with affine transition functions. A (local) functionf on (M,∇) is called affine if
∇df = 0. A local coordinate system(x1, . . . , xm) onM,m = dimM, is called affine if the
xi are affine functions. Any affine local coordinate system(x1, . . . , xm) defines a parallel
local coframe(dx1, . . . ,dxm). Conversely, since any parallel one-formsα is locally the
differential of an affine functionf , given a parallel coframe(α1, . . . , αm) defined on a
simply connected domainU ⊂ M there exist affine functionsxi onU such that dxi = αi .
The tuple(x1, . . . , xm) defines an affine local coordinate system near each pointp ∈ U .
This coordinate system is unique (as a germ, i.e. up to restrictions of the coordinate domain)
up to translations inRm. If we require in addition that the coordinate system is centred at
p ∈ U , i.e. thatxi(p) = 0, then it is uniquely determined.

Definition 2. Let (M, J,∇, ω) be a special symplectic manifold. A∇-affine local coor-
dinate system(x1, . . . , xn, y1, . . . , yn) onM is called a real special coordinate system if
ω = 2

∑
dxi ∧ dyi . A conjugate pair of special coordinates is a pair of holomorphic local

coordinates(z1, . . . , zn) and(w1, . . . , wn) such that(x1 = Rez1, . . . , xn = Rezn, y1 =
Rew1, . . . , yn = Rewn) is a real special coordinate system.
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Theorem 1.

(i) Any special symplectic manifold(M, J,∇, ω) admits a real special coordinate system
near any pointp ∈ M. A real special coordinate system is unique up to an affine
symplectic transformation.

(ii) Any affine local coordinate system(x1, . . . , xn, y1, . . . , yn) on a special complex man-
ifold admits a holomorphic extension, i.e. there exist holomorphic functionszi andwj
with Rezi = xi andRewj = yj . The extension is unique up to(purely imaginary)
translations.

(iii) Near any point of a special Kähler manifold there exists a real special coordinate sys-
tem which admits a holomorphic extension to a conjugate pair of special coordinates.

Proof. The existence and uniqueness statements about real special coordinate systems are
obvious. Let(x1, . . . , xn, y1, . . . , yn) be an affine local coordinate system on a special
complex manifold. Then we defineωi := dxi − √−1J ∗ dxi . By Corollary 1,J ∗ dxi =
dxi ◦ J is closed. This implies thatωi are closed one-forms of type (1, 0) and are hence
closed holomorphic one-forms. So there exist local holomorphic functionszi such thatωi =
dzi . By adding real constants we can arrange that Rezi = xi . Similarly, there exist local
holomorphic functionswj such that Rewj = yj . The uniqueness statement concerning this
holomorphic extension is obvious. We claim that in the case of special Kähler manifolds,
real special coordinates can be chosen such that the dzi , as well as thewj , are linearly
independent (overC). To see this, let us first observe that the dxi and dyj define a Lagrangian
splitting of T ∗

pM with respect toω−1 for any pointp in the coordinate domain:T ∗
pM =

Lx⊕Ly , whereLx = span{dx1, . . . ,dxn} andLy = span{dy1, . . . ,dyn}. TheJ -invariance
of the symplectic (Kähler) formω implies the existence of a Lagrangian splitting of the
form T ∗

pM = L⊕ J ∗L. Since any two Lagrangian splittings of a symplectic vector space
are related by a linear symplectic transformation, this shows that the real special coordinates
x1, . . . yn nearp can be chosen such that the corresponding Lagrangian subspacesLx , Ly
satisfyLx ∩ J ∗Lx = Ly ∩ J ∗Ly = 0 at the pointp, and hence on a coordinate domain
containingp. The equationLx ∩ J ∗Lx = 0 forces the dzi = dxi − √−1J ∗ dxi to be
linearly independent. So thezi define local holomorphic coordinates on the special Kähler
manifold. Similarly, as a consequence of the equationLy ∩ J ∗Ly = 0, thewj are local
holomorphic coordinates. �

2.3. The extrinsic construction of special manifolds

As in [4], we consider the following fundamental algebraic data: the complex vector
spaceV = T ∗

C
n = C2n with canonical coordinates(z1, . . . , zn, w1, . . . , wn) and standard

complex symplectic formΩ = ∑n
i=1 dzi ∧ dwi , the standard real structureτ : V → V

with fixed point setV τ = T ∗
R
n. Thenγ := √−1Ω(·, τ ·) defines a Hermitian form of

(complex) signature(n, n).
Let M be a connected complexn-fold. A holomorphic immersionφ : M → V is

callednon-degenerate(respectively,Lagrangian) if φ∗γ is non-degenerate (respectively, if
φ∗Ω = 0). If φ is non-degenerate, thenφ∗γ defines a, possibly indefinite, Kähler metric
g (i.e. Reφ∗γ ) on the complex manifoldM. The correponding Kähler formg(·, J ·) is a
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J -invariant symplectic form onM, whereJ denotes the complex structure ofM. Here,φ
is calledtotally complexif V τ ∩ dφ TpM = 0 for all p ∈ M.

Lemma 2. A holomorphic immersionφ : M → V is totally complex if and only if its real
part Reφ : M → V τ is an immersion.

Proof. Let φ : M → V be a totally complex holomorphic immersion. Restricting, i.e.
pulling back viaφ, the functionsxi := Rezi andyj := Rewj toM we obtain 2n functions
onM with everywhere linearly independent differentials. In fact, letα = ∑

ai dxi+∑ bjyj
be a real linear combination which vanishes on the complexn-dimensional linear subspace
dφ TpM ⊂ V . Then, sinceα is real, it must also vanish onτ dφTpM. Now we can conclude
thatα = 0, since, by our assumption onφ, dφ TpM ∩ τ dφ TpM = V τ ∩ dφ TpM ⊕ iVτ ∩
dφ TpM = 0 and, therefore,V = dφ TpM ⊕ τ dφ TpM. This shows that the functionsxi

andyj restrict to local coordinates onM and, hence, that Reφ is an immersion. Conversely,
let φ : M → V be a holomorphic immersion such that Reφ : M → V τ is an immersion.
We have to show thatV τ ∩ dφ TpM = 0 for all p ∈ M. Suppose, thatX ∈ TpM and
dφ X ∈ V τ . Then we have that 0= Im dφ X = −Re

√−1 dφ X = −Re dφ JX. This
implies thatJX = 0, because dReφ = Re dφ is injective. This shows thatX = 0 proving
V τ ∩ dφ TpM = 0. �

A holomorphic totally complex immersionφ induces a flat torsionfree connection on the
real tangent bundle ofM as follows. Since Reφ is an immersion, by Lemma 2, restricting the
functionsxi = Rezi andyj = Rewj toM we obtain local coordinates, which induce a flat
torsionfree connection∇ onM. Moreover, 2

∑
dxi∧dyi restricts to a∇-parallel symplectic

form ω onM. We call∇ andω the induced connection and the induced symplectic form,
respectively. Now we can easily prove this.

Theorem 2. Let φ be a totally complex holomorphic immersion of a complex manifold
(M, J ) intoV = T ∗

C
n,n = dimCM,∇ the induced connection andω = 2φ∗(

∑
dxi∧dyi)

the induced symplectic form. Then the following hold:
(i) (M, J,∇, ω) is a special symplectic manifold.

(ii) The pull back viaφ of the functions(x1 = Rez1, . . . , xn = Rezn, y1 = Rew1, . . . ,

yn = Rewn) of V defines a real special coordinate system around each point ofM.

Proof. We have to prove thatd∇J = 0. By Corollary 1, it is sufficient to check that the
one-forms dxi ◦ J and dyj ◦ J are closed. This follows immediately from the fact that the
one-forms dzi = dxi − √−1 dxi ◦ J and dwj = dyj − √−1 dyj ◦ J are closed. �

The next proposition clarifies the relation between the three notions defined above.

Proposition 6. Letφ be a holomorphic immersion of a complexn-foldM intoV = T ∗
C
n.

The following conditions are equivalent:

(i) φ is Lagrangian and non-degenerate.
(ii) φ is Lagrangian and totally complex.
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Theorem 3. Letφ be a holomorphic non-degenerate Lagrangian immersion of a complex
manifold(M, J ) into V inducing the Kähler metricg onM. The immersionφ is totally
complex, and hence induces also the data(∇, ω) onM. Moreover, the following hold:

(i) (M, J,∇, ω) is a special Kähler manifold.
(ii) ω coincides with the Kähler form ofg, i.e.ω = g(·, J ·).

(iii) The pull back viaφ of the canonical coordinates(z1, . . . , zn, w1, . . . , wn) ofV defines
a conjugate pair of special coordinates around each point ofM.

Proof. Thanks to Proposition 6 and Theorem 2 it is sufficient to prove thatg(·, J ·) = ω =
2φ∗(

∑
dxi ∧ dyi). A straightforward computation, which only uses the definition ofg,

shows that

2g(·, J ·) = ω + J ∗ω. (4)

On the other hand, sinceφ is Lagrangian, we know also that

0 = 2Reφ∗Ω = ω − J ∗ω.

This implies thatg(·, J ·) = ω. �

Now we will show that any simply connected special (complex, symplectic or Kähler)
manifold arises by the construction of Theorems 2 or 3

Theorem 4.

(i) Let (M, J,∇) be a simply connected special complex manifold of complex dimension
n. Then there exists a holomorphic totally complex immersionφ : M → V = T ∗

C
n

inducing the connection∇ on M. Moreover, φ is unique up to an affine transfor-
mation ofV preserving the real structureτ . Here, the real structure is considered
as a (constant) field of antilinear involutions on the tangent spaces ofV . Finally,
ω = 2φ∗(

∑
dxi ∧dyi) is a∇-parallel symplectic structure defining on(M, J,∇) the

structure of special symplectic manifold.
(ii) Let (M, J,∇, ω) be a simply connected special symplectic manifold of complex di-

mensionn. Then there exists a holomorphic totally complex immersionφ : M → V =
T ∗
C
n inducing the connection∇ and the symplectic formω onM. Moreover, φ is

unique up to an affine transformation ofV preserving the complex symplectic formΩ
and the real structureτ .

(iii) Let(M, J,∇, ω) be a simply connected special Kähler manifold of complex dimension
n then there exists a holomorphic non-degenerate Lagrangian(and hence totally com-
plex) immersionφ : M → V = T ∗

C
n inducing the Kähler metricg, the connection

∇ and the symplectic formω = 2φ∗(
∑

dxi ∧ dyi) = g(·, J ·) onM. Moreoverφ is
unique up to an affine transformation ofV preserving the complex symplectic formΩ
and the real structureτ . Here the real structure is considered as a field of antilinear
involutions on the tangent spaces ofV .

Proof. We prove (ii) and (iii). The proof of (i) is similar. By Theorem 1 there exist real
special coordinates near each point ofM. SinceM is simply connected, we can choose these
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local coordinates in a compatible way obtaining globally defined functionsxi andyj on
M such that(x1, . . . , xn, y1, . . . , yn) is a real special coordinate system near each point of
M. Then again by Theorem 1and the simple connectedness ofM we can holomorphically
extend these functions, i.e. there exist globally defined holomorphic functionszi andwj
such that Rezi = xi and Rewj = yj . Moreover, if (M, J,∇, ω) is special Kähler we
can assume that(z1, . . . , zn, w1, . . . , wn) form a conjugate pair of special coordinates. We
define the holomorphic map

φ := (z1, . . . , zn, w1, . . . , wn) : M → C
2n = V.

The fact thatφ is a totally complex immersion follows from the linear independence of
(dx1, . . . ,dxn,dy1, . . . ,dyn). This proves the existence statement in (ii). To prove (iii) we
need to check thatφ is Lagrangian, i.e. that the holomorphic two-formsΩ := ∑

dzi ∧
dwi = 0. This follows from theJ -invariance ofω = 2

∑
dxi∧dyi , since 2 ReΩ = ω−J ∗ω

and 2ImΩ = J · ω = 2
∑
Jdxi ∧ dyi + 2

∑
Jdyi ∧ dxi . Here the dot (·) stands for the

natural action ofgl(E) on ∧2E∗, whereE = TpM, p ∈ M. The uniqueness statement is
a consequence of the uniqueness statement in Theorem 1. �

We will call a holomorphic one-forms
∑
Fi dzi on an open subsetU ⊂ Cn regular

if the real matrix Im(∂Fi/∂zj ) is invertible. A holomorphic functionF on U is called
non-degenerateif its differential dF is a regular holomorphic one-forms. Any holomorphic
one-formsφ on a domainU ⊂ Cn can be considered as a holomorphic immersion

φ : U → V = T ∗
C
n.

So it makes sense to speak of totally complex or Lagrangian holomorphic one-forms.

Lemma 3. Letφ be a holomorphic one-forms. Then the following hold:

(i) φ is totally complex if and only if it is regular.
(ii) φ is Lagrangian if and only if it is closed.

Proof. Part (ii) is a well known fact from classical mechanics. To see (i) letφ = ∑
Fi dzi

be a holomorphic one-forms on a domainU ⊂ Cn. It is totally complex if and only if the
form (1/2)ω = φ∗(

∑
dxi ∧ dyi) is non-degenerate onU . We compute

1

2
ω =

∑
dxi ∧ dReFi =

∑(
Re

∂Fi

∂zj

)
dxi ∧ dxj −

∑(
Im

∂Fi

∂zj

)
dxi ∧ duj .

From this it is easy to see thatω is non-degenerate if and only if the matrix Im(∂Fi/∂zj ) is
invertible, i.e. if and only ifφ is regular. �

The following is a corollary of Lemma 3, Theorems 2 and 4.

Corollary 3. Any regular local holomorphic one-formsφ onCn defines a special symplectic
manifold of complex dimensionn. Conversely, any special symplectic manifold of complex
dimensionn can be locally obtained in this way.
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Corollary 4. Any non-degenerate local holomorphic function onCn defines a special Käh-
ler manifold of complex dimensionn. Conversely, any special Kähler manifold of complex
dimensionn can be locally obtained in this way.

Proof. A non-degenerate holomorphic functionF defines a regular and closed holomorphic
one-formsdF. The corresponding holomorphic immersionφ = dF is totally complex and
Lagrangian (by Lemma 3) and, by Proposition 6, non-degenerate. So it defines a special
Kähler manifold by Theorem 3. The converse statement follows from Theorem 4 and the
fact that any holomorphic non-degenerate Lagrangian immersion intoV is locally defined
by a regular closed holomorphic one-forms (after choosing an appropriate isomorphism
V = T ∗

C
n). Notice that every regular closed holomorphic one-forms on a simply connected

domain is the differential of a non-degenerate holomorphic function. �

3. Projective special geometry

3.1. Conic and projective special manifolds

We recall that alocal holomorphicC∗-actionon a complex manifoldM is a holomorphic
map

C
∗ ×M � (λ, p) �→ ϕλ(p) ∈ M

defined on an open neighbourhoodW of {1} ×M such that

(i) ϕ1(p) = p for all p ∈ M and
(ii) ϕλ(ϕµ(p)) = ϕλµ(p) if both sides are defined, i.e. if(λ, ϕµ(p)) ∈ W and(λµ, p) ∈

W .

From this definition it follows that for everyp ∈ M there exist open neighbourhoodsU1
of 1 ∈ C∗ andUp of p such thatU1 × Up ⊂ W andϕλ|Up is a diffeomorphism onto its
image for allλ ∈ U1. We will say that an equation involvingϕλ holdslocally if it holds on
any open setU ⊂ M on whichϕλ is defined and on which it is a diffeomorphism onto its
image. Of course, even if it is not explicitly mentioned, an equation involvingϕλ is always
meant to hold only locally.

We use polar coordinates(r, θ) to parametriseC∗ = {λ = reiθ |r, θ ∈ R, r > 0} and
considerθ as a map fromC∗ toR/2πZ.

Definition 3.

(i) Let (M, J,∇) be a complex manifold with a flat torsionfree connection. It is called a
conic complex manifoldif it admits a local holomorphicC∗-actionϕλ such that locally
dϕλ X = reθJX = r( cosθ)X + r( sinθ)JX for all ∇-parallel vector fieldsX, where
λ = reiθ .

(ii) A conic symplectic manifold is a conic complex manifold(M, J,∇) together with a
parallel symplectic formω.

(iii) A conic symplectic manifold(M, J,∇, ω) is called a conic Kähler manifold ifω is
J -invariant.
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Notice that the condition dϕλ X = reθJX for all ∇-parallel vector fieldsX implies that
ϕ∗
λ∇ = ∇θ .

Proposition 7.

(i) Any conic complex manifold is a special complex manifold.
(ii) Any conic symplectic manifold is a special symplectic manifold.

(iii) Any conic Kähler manifold is a special Kähler manifold.

Proof. Let (M, J,∇) be a conic complex manifold andϕλ the corresponding local action.
Sinced∇J = 0 is a local condition, it is sufficient to prove that any pointp ∈ M has an
open neighbourhoodU such that(U, J,∇) is a special complex manifold. By Proposition
1 it is sufficient to check that for any pointp ∈ M there exist open neighbourhoodsU1 of
1 ∈ R/2πZ andUp ofp such that∇θ is a torsionfree connection onUp for all θ ∈ U1. From
the definition of local action it follows that for anyp ∈ M there exist open neighbourhoods
U1 of 1 ∈ R/2πZ andUp ofp such thatϕλ is defined onUp andϕλ|Up is a diffeomorphism
onto its image for allλ = eiθ with θ ∈ U1. Since(M, J,∇) is a conic complex manifold
we have∇θ = ϕ∗

λ∇ onUp for all θ ∈ U1. Thus,∇θ is a torsionfree connection onUp,
proving (i). Statements (ii) and (iii) follow easily from (i). �

Theorem 5.

(i) Let(M, J,∇)be a complex manifold with a flat torsionfree connection. Then(M, J,∇)
is a conic complex manifold if and only if there exists a local holomorphicC

∗-action
ϕλ and for everyp ∈ M holomorphic functionsz1, . . . , zn andw1, . . . , wn defined
nearp such that

(a) zi ◦ ϕλ = λzi andwj ◦ ϕλ = λwj nearp and
(b) x1 := Rez1, . . . , xn := Rezn, y1 := Rew1, . . . , yn := Rewn are affine local

coordinates nearp.

(ii) Let (M, J,∇, ω) be a complex manifold with a flat torsionfree connection and a
parallel symplectic form. Then(M, J,∇, ω) is a conic symplectic manifold if and only
if there exists a local holomorphicC∗-actionϕλ and for everyp ∈ M holomorphic
functionsz1, . . . , zn andw1, . . . , wn defined nearp such that

(a) zi ◦ ϕλ = λzi andwj ◦ ϕλ = λwj nearp and
(b) x1 := Rez1, . . . , xn := Rezn, y1 := Rew1, . . . , yn := Rewn are affine local

coordinates nearp.

Moreover, if (M, J,∇, ω) is a conic(special) symplectic manifold then the local
holomorphic functionszi andwj can be chosen such that their real partsxi and yj
form a real special coordinate system.

(iii) Let (M, J,∇, ω) be a complex manifold with a flat torsionfree connection and a
parallel J -invariant symplectic form. Then(M, J,∇, ω) is a conic Kähler manifold
if and only if there exists a local holomorphicC∗-action ϕλ and for everyp ∈ M

holomorphic functionsz1, . . . , zn andw1, . . . , wn defined nearp such that
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(a) zi ◦ ϕλ = λzi andwj ◦ ϕλ = λwj nearp and
(b) x1 := Rez1, . . . , xn := Rezn, y1 := Rew1, . . . , yn := Rewn are affine local

coordinates nearp.

Moreover, if (M, J,∇, ω) is a conic(special) Kähler manifold then the local holo-
morphic functionszi andwj can be chosen such that they form a conjugate pair of
special coordinates.

Proof. We prove only (i). Parts (ii) and (iii) are proven similarly. Let(M, J,∇) be a conic
complex manifold andx1, . . . , xn, y1, . . . , yn affine local coordinates on it. By Proposition
7 and Theorem 1 it is a special complex manifold and the affine local coordinates admit
a holomorphic extensionz1, . . . , zn, w1, . . . , wn. From dϕλ X = reθJX for all ∇-parallel
vector fields it follows thatzi ◦ ϕλ = λzi + c(λ), wherec : C∗ → C

n is a smooth map.
Sinceϕλ is a local action, the mapc must satisfy the functional equation

c(λµ) = λc(µ)+ c(λ)

for all λ,µ ∈ C∗ near 1∈ C∗ andc(1) = 0. It is easy to see that this impliesc(λ) =
(1−λ)z0 for some constant vectorz0 ∈ Cn. Up to adding (real) constants to thexi , we can
assume that the vectorz0 has purely imaginary components. Then changing the holomorphic
extensionszi by adding purely imaginary constants, we can arrange thatc = z0 = 0 and,
hence, thatzi ◦ ϕλ = λzi . Similarly, we can show that by adding constants one can arrange
thatwj ◦ϕλ = λwj . This shows that a conic complex manifold admits a local holomorphic
C

∗-action and local holomorphic functions with the properties (a) and (b). Next, we prove
the converse statement of (i). So letϕλ be a local holomorphicC∗-action on(M, J,∇) and
z1, . . . , zn, w1, . . . , wn local holomorphic functions satisfying (a) and (b). From (a) and (b)
it follows that dϕλ X = reθJX for all ∇-parallel vector fieldsX, by differentiation. This
shows that(M, J,∇) is a conic complex manifold. �

Next, we are going to define the notion of projective special (complex, symplectic or Kähler)
manifold. These manifolds arise as orbit spaces of conic special (complex, symplectic or
Kähler) manifolds. Letϕλ be a local holomorphicC∗-action on a complex manifoldM. To
any pointp ∈ M we associate the holomorphic curveϕ(p) : λ �→ ϕλ(p) in M defined
on an open neighbourhood of 1∈ C∗. If ϕλ is the localC∗-action associated to a conic
complex manifold thenϕ(p) is an immersion andDp := ϕ(p) T1C

∗ ⊂ TpM defines
an integrable complex one-dimensional holomorphic distribution onM. Its leaves are by
definition theorbits of the localC∗-actionϕλ. We denote byM̄ = M/C∗ the set of orbits
with the the quotient topology.̄M will be called the orbit space ofM. If M is a conic
(complex, symplectic or Kähler) manifold and the projectionM → M̄ is a holomorphic
submersion onto a Hausdorff complex manifold, thenM̄ is called aprojective special
(complex, symplectic or Kähler)manifold.

3.2. Conic special coordinates

Definition 4. An affine local coordinate system(x, y) := (x1, . . . , xn, y1, . . . , yn) on
a conic complex manifold(M, J,∇) with corresponding localC∗-action ϕλ is called
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a conic affine local coordinate system if it admits a holomorphic extension(z, w) :=
(z1, . . . , zn, w1, . . . , wn) such that locally(z, w) ◦ ϕλ = λ(z,w). Such a holomorphic
extension is called a conic holomorphic extension.

In view of Definition 4, we will freely speak of conic real special coordinate systems
(x, y) on conic symplectic manifolds and of conic conjugate pairs of special coordinates
(z, w) on conic Kähler manifolds. The following theorem is a corollary of Theorem 5.

Theorem 6.

(i) Any conic complex manifold admits a conic local affine coordinate system near any
pointp ∈ M. A conic local affine coordinate system is unique up to a linear transfor-
mation.

(ii) Any conic symplectic manifold admits a conic real special coordinate system near
any pointp ∈ M. A conic real special coordinate system is unique up to a linear
symplectic transformation.

(iii) Any conic Kähler manifold admits a conic conjugate pair of special coordinates.
A conic conjugate pair of special coordinates is unique up to a(complex) linear
symplectic transformation.

3.3. The extrinsic construction of conic and projective special manifolds

Let us consider the same fundamental dataV , Ω and τ as in Section 2.3. OnV we
have the standard (global) holomorphicC∗-actionC∗ × V � (λ, v) �→ λv ∈ V . A
holomorphic immersionφ of a complex manifoldM into V is calledconic if for every
point p ∈ M and every neighbourhoodU of p there exist neighbourhoodsU1 of 1 ∈
C

∗ andUp of p such thatλφ(Up) ⊂ φ(U) for all λ ∈ U1. Notice that we do not re-
quire the imageφ(M) to be a complex cone, i.e. (globally) invariant under theC∗-action
onV .

Theorem 7. Letφ be a conic totally complex holomorphic immersion of a complex manifold
(M, J ) intoV = T ∗

C
n,n = dimCM,∇ the induced connection andω = 2φ∗(

∑
dxi∧dyi)

the induced symplectic form. Then the following hold:

(i) (M, J,∇, ω) is a conic symplectic manifold.
(ii) The pull back viaφ of the functions(x1 = Rez1, . . . , xn = Rezn, y1

= Rew1, . . . , yn = Rewn) ofV defines a conic real special coordinate system around
each point ofM.

Proof. Sinceφ is a conic holomorphic immersion, the holomorphicC∗-action onV in-
duces a local holomorphicC∗-actionϕλ onM. One can easily check thatϕλ defines on
(M, J,∇, ω) the structure of a conic symplectic manifold with conic real special coordinates
x1 ◦ φ, . . . , xn ◦ φ, y1 ◦ φ, yn ◦ φ. �

Theorem 8. Let φ be a conic holomorphic non-degenerate Lagrangian immersion of a
complex manifold(M, J ) into V inducing the Kähler metricg onM. The immersionφ is
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totally complex, and hence induces also the data(∇, ω) onM. Moreover, the following
hold:

(i) (M, J,∇, ω) is a conic Kähler manifold.
(ii) ω coincides with the Kähler form ofg, i.e.ω = g(·, J ·).

(iii) The pull back viaφ of the canonical coordinates(z1, . . . , zn, w1, . . . , wn) ofV defines
a conic conjugate pair of special coordinates around each point ofM.

Proof. This follows from Theorems 3 and 7. �

Now we will show that any simply connected conic (complex, symplectic or Kähler)
manifold arises by the construction of Theorems 7 or 8.

Theorem 9.

(i) Let (M, J,∇) be a simply connected conic complex manifold of complex dimension
n. Then there exists a conic holomorphic totally complex immersionφ : M → V =
T ∗
C
n inducing the connection∇ onM. Moreover, φ is unique up to a linear trans-

formation ofV preserving the real structureτ . Here, the real structure is considered
as a (constant) field of antilinear involutions on the tangent spaces ofV . Finally,
ω = 2φ∗(

∑
dxi ∧dyi) is a∇-parallel symplectic structure defining on(M, J,∇) the

structure of conic symplectic manifold.
(ii) Let(M, J,∇, ω) be a simply connected conic symplectic manifold of complex dimen-

sionn. Then there exists a conic holomorphic totally complex immersionφ : M →
V = T ∗

C
n inducing the connection∇ and the symplectic formω onM. Moreover, φ

is unique up to a linear transformation ofV preserving the complex symplectic form
Ω and the real structureτ .

(iii) Let (M, J,∇, ω) be a simply connected conic Kähler manifold of complex dimension
n then there exists a conic holomorphic non-degenerate Lagrangian (and hence totally
complex) immersionφ : M → V = T ∗

C
n inducing the Kähler metricg, the connec-

tion∇ and the symplectic formω = 2φ∗(
∑

dxi ∧dyi) = g(·, J ·) onM. Moreover, φ
is unique up to a linear transformation ofV preserving the complex symplectic form
Ω and the real structureτ . Here, the real structure is considered as a field of antilinear
involutions on the tangent spaces ofV .

Proof. The proof is completely analogous to that of Theorem 4. To prove (ii), for instance,
it is essentially sufficient to replace real special coordinates by conic real special coordinates
in the proof of Theorem 4 (ii). �

We will call a holomorphic one-forms
∑
Fi dzi on an open subsetU ⊂ Cn conic if the

corresponding holomorphic immersionU � z �→ ∑
Fi(z)dzi ∈ T ∗

z C
n ⊂ T ∗

C
n = V is

conic. This is the case if and only if the functionsFi are locally homogeneous of degree
one, i.e. ifFi(λz) = λFi(z) for all z ∈ U and allλ near 1∈ C∗.

A holomorphic functionF onU is calledconic if its differentialdF is conic. This is the
case if and only ifF is locally homogeneous of degree 2, i.e. ifF(λz) = λ2F(z) for all
z ∈ U and allλ near 1∈ C∗.

We have the following analogues of Corollaries 3 and 4.
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Corollary 5. Any conic regular local holomorphic one-formsφ on Cn defines a conic
symplectic manifold of complex dimensionn. Conversely, any conic symplectic manifold of
complex dimensionn can be locally obtained in this way.

Corollary 6. Any conic non-degenerate local holomorphic function onCn defines a conic
Kähler manifold of complex dimensionn.Conversely,any conic Kähler manifold of complex
dimensionn can be locally obtained in this way.

Remark 3. Let M̄ = M/C∗ be a projective special (complex, symplectic or Kähler)
manifold, withM simply connected. Then the holomorphic immersionφ : M → V

constructed in Theorem 9 induces a holomorphic immersionφ̄ : M̄ → P(V ) into the
complex projective space of complex dimension 2n− 1. The holomorphic immersion̄φ is
unique up to a projective transformation induced by a linear symplectic transformation of
V preserving the real structureτ . To constructφ̄ it is sufficient to assume that̄M is simply
connected.

4. Geometric structures on the cotangent bundle of special symplectic manifolds

In this section, we prove that the cotangent bundle of a special symplectic manifold
carries two canonical complex structuresJ1, J2. Moreover, if the (1, 1)-part of the sym-
plectic formω is non-degenerate it also carries an almost hyper-Hermitian structure. This
almost hyper-Hermitian structure is hyper-Kähler if and only ifω11 is parallel. If the
(2,0)-part of ω is non-degenerate we obtain an almost para-hypercomplex structure. It
is para-hypercomplex if and only ifω20 is parallel. This generalises the known con-
struction of a hyper-Kähler metric on the cotangent bundle of a special Kähler manifold
[2,4,7,8].

LetM be a manifold and denote byN = T ∗M its cotangent bundle. A connection∇ on
M defines a decomposition

TξN = H∇
ξ ⊕ T vξ N

∼= TpM ⊕ T ∗
pM, ξ ∈ N, p = π(ξ), (5)

whereπ : N = T ∗M → M, T vξ N is the vertical subspace andH∇
ξ is the horizontal

subspace defined by the connection∇. Here, we have a natural identification ofT vξ N with

T ∗
pM and an identification ofH∇

ξ with TpM defined by the projectionπ . If M is a complex
manifold with complex structureJ , thenN carries a natural complex structureJN . We
note that the vertical subspaceT vξ N is JN -invariant, but the horizontal subspaceH∇

ξ is in

general not. We denote byJ∇ the almost complex structure onN defined with respect to
the decomposition (5) by

J∇ =
(
J 0

0 J ∗

)
(6)

In generalJ∇ is not integrable.
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Proposition 8. Let ∇ be a connection on a complex manifold(M, J ). The horizontal
distributionH∇ ⊂ TN is JN -invariant if and only if there exists a torsionfree complex
(i.e. DJ = 0) connectionD on M such that the tensor fieldA := ∇ − D satisfies the
condition

A
ξ
X ◦ J = A

ξ
JX ∀X ∈ TM, (7)

whereAξXY = ξ(AXY).

For the proof we need two lemmas. The first one is well known.

Lemma 4. Let D and ∇ be connections on a manifoldM andA = ∇ − D. Then the
corresponding horizontal distributionsHD andH∇ are related by

H∇
ξ = AξHD

ξ = {v̂ = v + Aξv |v ∈ HD
ξ

∼= TpM},
whereξ ∈ N = T ∗M andp = π(ξ).

Lemma 5. Let∇ be a torsionfree complex connection on a complex manifold(M, J ). Then
the horizontal distributionH∇ ⊂ TN isJN -invariant and henceJ∇ = JN .

Proof. Let (x1, . . . , xn, y1, . . . , yn, u1, . . . , un, v1, . . . , vn) be the local coordinate system
onN = T ∗M associated to a holomorphic local coordinate system(z1, . . . , zn) onM, i.e.
zi = xi + √−1yi andω = ∑

dxi ∧ dui + ∑
dyj ∧ dvj is the canonical symplectic

structure onN . Note that

T vN = span

{
∂

∂u1
, . . . ,

∂

∂un
,
∂

∂v1
, . . . ,

∂

∂vn

}
.

We denote byD the local connection onM with horizontal space

HD := span

{
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

}
.

This connection is flat and torsionfree, with affine local coordinatesx1, . . . , xn,

y1, . . . , yn. It is also complex because the complex structureJ is constant in these
coordinates:

J
∂

∂xi
= ∂

∂yi
, J

∂

∂yi
= − ∂

∂xi
.

In terms of the induced coordinate system onN , JN is given by

JN
∂

∂xi
= ∂

∂yi
, JN

∂

∂uj
= − ∂

∂vj
; JN

∂

∂yi
= − ∂

∂xi
, JN

∂

∂vj
= ∂

∂uj

This clearly shows thatJD = JN . Now let ∇ be any torsionfree complex connection on
(M, J ). This means that the(1,2) tensorA = ∇ −D is symmetric andJ -linear, i.e.

AXY = AYX, [AX, J ] = 0 ∀X, Y ∈ TM.
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The latter equation can also be written in the formJ ∗AξX = A
J ∗ξ
X for all ξ ∈ T ∗M. We

claim that this implies theJN -invariance ofH∇ = AHD. In fact we have

JN v̂ = JN(v + Aξv) = Jv + J ∗Aξv = Jv + AJ
∗ξ

v = Jv + AJ
∗ξ v = Jv + J ∗(Aξ )v

= Jv + AξJv = Jv + A
ξ
Jv = Ĵv ∀v ∈ HD

ξ
∼= TpM, p = π(ξ) ∈ M. �

Proof (of Proposition 8). LetD be a torsionfree complex connection onM and∇ a connec-
tion onM such thatA = ∇ −D satisfies (7). To prove thatH∇ is JN -invariant it suffices to
check thatJN v̂ = Ĵv for all v ∈ HD

ξ
∼= TpM. Using the identification (5) and the identity

(7) we compute

JN v̂ = JN(v + Aξv) = Jv + J ∗Aξv = Jv + Aξv ◦ J = Jv + A
ξ
Jv = Ĵv.

Conversely, let∇ be a connection onM such thatH∇ isJN -invariant. From the integrability
ofJ it follows that there exists a torsionfree complex connectionD onM. Now we check that
JNH∇ = H∇ implies (7). Forv̂ = v+A

ξ
v ∈ H∇

ξ , we have by Lemma 5:JN v̂ = Jv+J ∗Aξv .
This shows thatJN v̂ ∈ H∇

xi if and only if JN v̂ = Ĵv. The latter equation is equivalent to

J ∗Aξv = A
ξ
Jv, which is precisely (7). �

Now letω be a field of non-degenerate bilinear forms on a manifoldM, considered as a map
TM → T ∗M, and∇ a connection onM. Using the identification (5) we define an almost
complex structureJω onN = T ∗M by

Jω =
(

0 −ω−1

ω 0

)
(8)

Lemma 6. If ∇ is flat and torsionfree andω is∇-parallel thenJω is integrable.

Proof. If we expressJω in terms of the canonical coordinates onN = T ∗M induced
by local affine coordinates onM, then it has constant coefficients. This shows thatJω is
integrable. �

Theorem 10. Let(M, J,∇, ω)be a special symplectic manifold. Then the cotangent bundle
N = T ∗M carries two natural complex structures

J1 = J∇ =
(
J 0

0 J ∗

)
and J2 = Jω =

(
0 −ω−1

ω 0

)
.

The commutator and anticommutator ofJ1 andJ2 are given by

[J1, J2] = 2J1

(
0 −(ω−1)11

ω11 0

)
= −2

(
0 −(ω−1)11

ω11 0

)
J1,
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{J1, J2} = 2J1

(
0 −(ω−1)′

ω′ 0

)
= 2

(
0 −(ω−1)′

ω′ 0

)
J1,

whereω′ = ω20 + ω02.

Proof. The integrability ofJ2 follows from Lemma 6. To prove the integrability ofJ1, by
Proposition 8, it is sufficient to check the identity (7) forA = ∇ −D = (1/2)J ∇J , where
D = (1/2)(∇ + ∇(J )) is the torsionfree complex connection of Proposition 3. Using the
fact that∇J is symmetric we compute

2AX ◦ J = J (∇XJ ) ◦ J = ∇XJ=(∇ · J )X = J (∇ · J )JX=J (∇JXJ )=2AJX. �

Theorem 11. Let (M, J,∇, ω) be a special symplectic manifold.

(i) Assume thatω11 is non-degenerate. Then the cotangent bundleN = T ∗M carries a
canonical almost hyper-Hermitian structure(J1, J2, J3 = J1J2 = −J2J1, gN) given
by

J1 = J∇ , J2 = Jω
11
, gN = diag(g, g−1),

whereg = ω11(J ·, ·) is the Kähler metric onM, seeProposition 5.J1 is the standard
(integrable) complex structure on the cotangent bundle of the complex manifold(M, J ).
The almost hyper-Hermitian manifold(M, J1, J2, J3, gN) is hyper-Hermitian(i.e. the
almost complex structuresJ1, J2, J3 are integrable) if and only if∇ω11 = 0. In this
case(M, J1, J2, J3, gN) is a hyper-Kähler manifold.

(ii) Assume thatω′ = ω20 + ω02 is non-degenerate. Then the cotangent bundleN = T ∗M
carries a canonical almost para-hypercomplex structure(J1, J2), i.e. a commuting pair
of almost complex structures, given by

J1 = J∇ , J2 = Jω
′
.

J1 is again the standard(integrable) complex structure and(J1, J2) is an(integrable)
para-hypercomplex structure(i.e.J1 andJ2 is integrable) if and only if∇ω20 = 0.

Note that in the second caseJ3 = J1J2 is not an almost complex structure but an almost
product structure, i.e. an involution.

Proof. Using the identities

J ∗ ◦ ω11 = −ω11 ◦ J, J ∗ ◦ ω′ = ω′ ◦ J,
where the two-formsω11 andω′ are considered as linear mapsTM → T ∗M, one can check
that J1 andJ2 are anticommuting or commuting almost complex structures in cases (i)
and (ii), respectively. To check thatgN is Hermitian with respect to the almost complex
structures(J1, J2, J3) in case (i), we computeωα := gN ◦ Jα as follows:

ω1 = −
(∑

ωij dqi ∧ dqj +
∑

ωij dpi ∧ dpj
)
,
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whereω11 = ∑
ωij (q)dqi ∧ dqj is the expression of the symplectic formω11 in ∇-affine

coordinatesqi onM, (ωij ) = (ωij )
−1 and thepi are the conjugate momenta corresponding

to theqi .

ω2 =
∑

(J ∗ dqj ) ∧ dpj , ω3 =
∑

dqj ∧ dpj .

From these formulas we see that theωα are skew-symmetric and therefore that theJα are
gN -orthogonal. This shows that(J1, J2, J3, gN) is an almost hyper-Hermitian structure.
The formω3 is closed. The formω2 is closed since dJ ∗η = 0 for any parallel one-formsη.
The formω1 is closed if and only if the coefficientsωij are constant, i.e. if and only ifω11

is ∇-parallel. If this is the case, then the almost hyper-Hermitian structure(J1, J2, J3, gN)

is hyper-Kähler, e.g. by Hitchin’s Lemma.
Assume now thatJ2 is integrable, i.e. the Nijenhuis tensorNJ2 = 0. A direct calculation

shows that

J2NJ2(∂qi , ∂qj ) =
∑
k

(ρjk,i − ρik,j )∂pk ,

whereρij (q) are the coefficients ofρ = ω11 or ω′ in cases (i) or (ii), respectively. Notice
thatρik,j − ρjk,i are the coefficients of the two-forms d(i∂

qk
ρ) = L∂

qk
ρ. This shows that

NJ2(∂qi , ∂qj ) = 0 implies that Lie derivative ofρ in the direction of any parallel vector
field onM vanishes, and hence thatρ is parallel. �
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