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Abstract

We introduce the notion of a special complex manifold: a complex manifidld/) with a flat
torsionfree connectio¥ such thatVJ is symmetric. A special symplectic manifold is then de-
fined as a special complex manifold together witi-parallel symplectic forna. This generalises
Freed'’s definition of (affine) special Kéhler manifolds. We also define projective versions of all
these geometries. Our main result is an extrinsic realisation of all simply connected (affine or pro-
jective) special complex, symplectic and Kéhler manifolds. We prove that the above three types of
special geometry are completely solvable, in the sense that they are locally defined by free holomor-
phic data. In fact, any special complex manifold is locally realised as the image of a holomorphic
one-formsy : C" — T*C". Such a realisation induces a canonieagbarallel symplectic structure
on M and any special symplectic manifold is locally obtained this way. Special Kahler manifolds
are realised as complex Lagrangian submanifolds and correspond to closedrfdfinally, we
discuss the natural geometric structures on the cotangent bundle of a special symplectic manifold,
which generalise the hyper-Kéhler structure on the cotangent bundle of a special K&hler manifold.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Special Kéhler manifolds have attracted a great deal of interest in both string theory and
differential geometry, since they first arose in the pioneering paper of de Wit and Van Proeyen
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[5] as the allowed target spaces for Maxwell supermultiplets coupled to four-dimensional
N = 2 supergravity. These manifolds play a crucial role as admissible target spaces for
scalar and vector couplings in batigid supersymmetric theories and in supergravity the-
ories, where the supersymmetry algebra is ‘locally’ realised. The special Kéhler manifolds
occurring in rigid and local supersymmetric theories correspond respectively to the affine
and projective variants of special Kéhler manifolds in the mathematical literature [3,4,7,8].
Special Kahler geometries, moreover, occur as natural geometric structures on certain mod-
uli spaces. Projective special Kahler manifolds occur, for example, as moduli spaces of
Calabi—Yau three-folds (see e.g. [3,4]) and affine special Kahler manifolds occur as moduli
spaces of complex Lagrangian submanifolds of hyper-Kahler manifolds [8]. Further, the
base of any algebraic integrable system is also affine special Kahler [6,7].

The purpose of this paper is to develop a unified perspective from which the various
mathematical and physical approaches to special geometry (affine versus projective, in-
trinsic versus extrinsic, definition versus construction) can be seen as different aspects of
the same structure. We introduce the notion gpacial complex manifolds a complex
manifold (M, J) with a flat torsionfree connectiovi such that

dvJ =0. @)

We call it special symplectidf, in addition, aV-parallel symplectic formw is specified.
Further, ifw is J-invariant, or equivalently, of type (1, 1), it is preciselypecial Kéhler
manifold in the sense of [7]. More generally, we shall see that the Hodge comparénts
0?0, »%2 of w are closed (Proposition 4). If the formt! is non-degenerate, it defines a
(pseudo) Kahler metrig = ' o J on M and if !l is V-parallel (e.g. ifv = w!?) then
(M, J,V, o) is a special K&hler manifold.

We give an extrinsic realisation of simply connected special complex, symplectic and
Ké&hler manifolds as immersed complex submanifoldg"d". The main property of a
special complex manifold used in our construction, is that any affine fungti@e. a func-
tion satisfyingvdf = 0) can be extended to a holomorphic functiBrsuch that R& =
f. In particular, for a special symplectic manifold any local affine symplectic coordinate
system(x!, ..., x" y1,..., y,) can be extended to a system of holomorphic functions
L, ..., 7" w1, ..., wy), which defines a local holomorphic immersion &f into c2,
such that the special symplectic structure is induced by certain canonical stuct@#s on

The fundamental example of a special complex manifdlds associated to a (local)
holomorphic one-forms = > F; dz' on C" with invertible real matrix INQd F; /9z;) as
follows: The complex manifoldd = M, is the image of the sectiam : C* — T*C" =
C?". The flat torsionfree connectiov on M is defined by the condition that the real part
ReF of any complex affine functiof onC?” restricts to &-affine function onM. Such a
manifold M carries a naturdV-parallel symplectic fornm and can therefore be considered
as a special symplectic manifold as well. If, in addition, the one-farisxlosed (and hence
locally « = dF for a holomorphic functiorf), thenM,, is a Lagrangian submanifold and
w is of type (1, 1). SaM,, is then a special K&hler manifold. Conversely, we prove that any
special complex, symplectic or Kahler manifold can be locally obtained by this construction.
More generally, we show that any totally complex holomorphic immergioha complex
n-manifold M into C2" induces onM the structure of a special symplectic manifold. Here,
we call animmersiototally complexf the intersection ¢ (TpM)ﬂRZ” = Oforallp e M.
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If in addition, the immersiom is Lagrangian (i.e. ¢ (T, M) is a Lagrangian subspace of
T*C"), thenM is a special Kahler manifold. Our main result is that any simply connected
special complex, symplectic or Kéhler manifold can be constructed in this fashion. In
particular, any special Kahler manifold is locally defined by a holomorphic funétidrhis
result is used in [1] in order to associate a parabolic affine hypersphere of real dimension
2n to any holomorphic functiow (z%, z2, . . ., z") with invertible real matrix ING9 F; /0z).

In Section 3, by including special complex manifoldd, J, V) into a one-parameter
family (M, J, V%), 6 e ST, we define projective versions of special complex, symplectic
and Kahler manifolds in terms of an action@f on M which is transitive on this family. Our
approach is based on the following observation: Any special complex mai¥ald, V)
can be included in a one-parameter fantily, J, vV?) of special complex manifolds, with
the connectiorv? defined by

vix =&’/vEe? x), (2)

where 8’ X = (cos#)X + (sin 6)JIX. A complex manifold(M, J) with a flat torsionfree
connectiorV is called aconic complex manifold it admits a local holomorphi€*-action

¢, with differential dp;, X = r&’/ X for all V-parallel (local) vector fieldX, wherex =
r&?. This impliesp;V = V?. We show that a conic complex manifold is automatically
special.

Assume that the manifoldf, c T*C", o = Y F;d7/, is a complex cone, i.e. it is
invariant under complex scalings. This is the case when the coefficient fundijcas
homogeneous of degree one. The induced special geomely mthen conic. Conversely,
we prove that any conic (special) complex, symplectic or Kahler manifold can be locally
realised as such a cone. In particular, any conic special Kahler manifold is locally described
by the differentiake = dF of a holomorphic homogeneous functiéhof degree two. In
the simply connected case, we give a global description of conic special manifolds in terms
of holomorphic immersions.

We then define a projective special complex, symplectic or Kahler manifold as the orbit
spaceM of a conic complex, symplectic or Kéhler manifol by the localC*-action,
assuming thaiV is a (Hausdorff) manifold. From the realisation of simply connected
conic manifolds as immersed submanifolds78fC", we obtain an analogous realisation
of projective special manifolds as immersed submanifolds of complex projective space
P(T*C™). From this it follows that our definition of projective special Kéhler manifolds is
consistent with that given by Freed [7].

Finally, we discuss the natural geometric structures on the cotangent bundle of a special
symplectic manifold, which are generalisations of the known hyper-Kéhler structure on
the cotangent bundle of a special Kahler manifold [2,4,7,8]. We prove that the cotangent
bundleN = T*M of a special symplectic manifold/ carries two canonical complex
structures: the standard complex structiirenduced byJ and a complex structuré®,
defined byw andV. If the formw!tis non-degenerate, theh = 7*M carries also a natural
almost hyper-Hermitian structui@y, J2, gn), i.e. a Riemannian metrigy (which is an
extension of the Kahler metric = w'%o J) and two anticommutingy-orthogonal almost
complex structuredy, J». This almost hyper-Hermitian structure is integrable, Jseand
J» are integrable, if and only b1 is V-parallel. In this casé/1, J2, gn) is a hyper-Kahler
structure and we recover the known hyper-Kahler structure on the cotangent bundle of a
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special Kahler manifold. Similarly, &’ = »?° + »%? is non-degenerate, thevi = T*M
carries a natural almost para-hypercomplex structutieat is a pai(Jy, J2) of commuting
almost complex structures. Herg, is the standard integrable complex structure #&nis
integrable if and only if the forna’ is V-parallel.

2. Affine: special geometry

2.1. Special manifolds

Definition 1. A special complex manifol@M, J, V) is acomplex manifoldM, J) together
with a flat torsionfree connectiovi (on its real tangent bundle) such that

avJ=0.

Here, the complex structuré is considered as a one-forms with valuesTid and 4"
denotes the covariant exterior derivative defined/y

A special symplectic manifoldM, J, V, w) is a special complex manifoltM, J, V)
together with &v-parallel symplectic structure.

A special Kahler manifold is a special symplectic manifgld, J, V, w) for whichw is
J-invariant, i.e. of type (1, 1). The (pseudo-)Kéhler meric, -) := w(J-, -) is called the
special Kahler metric of the special Kahler manifoM, J, V, w).

Remark 1. The evaluation of th&M-valued two-forms¥J = alt(VJ) on two tangent
vectorsX andY is given by

dVJ(X,Y) = (VxJ)Y — (Vy)X.

Remark 2. Since, we do not assume the definiteness of the metric, it would be more
accurate to speak of special pseudo-Kahler manifolds/metrics. However, as the signature of
the metric is not relevant for our present discussion, we shall omit the prefix pseudo.

Given a linear connectiolW on a manifoldM and an invertible endomorphism fiekd
on a manifoldM, we denote by (4 the connection defined by

VA X = Av(Aa~1X).

Given a flat connectioi¥ on (the real tangent bundle of) a complex manifgld, J), we

define a one-parameter family of connectiois= vED parametrised by the projective
line P1 = R/7Z, where &/ = (cosd)ld + (sind)J. The connectiov? is flat, since

ViX =0« vEe?x) =0,
whereX is a local vector field o/
1 The notion of para-hypercomplex structure used in this paper, involving two commuting complex structures

and one involution (the produdy J»), is a variant of the more standard notion consisting of two anticommuting
involutions and one complex structure.
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Lemmal. LetV be a flat connection with torsiofi on a complex manifoldM, J). Then
Vvl =v 4+ A% where A% =& v(Ee?)=—(sino)e’ V.

The torsionT? of the connectiow? is given by
T =T +alt(A?) = T — (sing)e’aV J. ()

Proposition 1. LetV be a flat torsionfree connection on a complex manifad J). Then

the triple (M, J, V) defines a special complex manifold if and only if one of the following

equivalent conditions holds:

(@) dvVJ =0.

(b) The flat connectioiv? is torsionfree for somé = 0 (modnZ).

() The flat connectioW? is torsionfree for allg.

(c) There exist® = 0(modxZ) such thatfe’’ X, &’/y] = 0 for all V-parallel local
vector fieldsX andY on M.

(©) [e?’ x, &’/ Y] = Ofor all 6 and all V-parallel local vector fieldst andY on M.

(d) There exist® = 0(modrZ) such thatd(é o e /) = 0 for all V-parallel local
one-formst on M.

(d) d(& o e ?/) = 0forall 6 and all V-parallel local one-formg on M.

Proof. Part (a) is the property defining special complex manifolds. Sivide torsionfree,
the torsion7? of V¥ is related taZV J in virtue of(3) by
T = —(sing)e’aV .

If % 0 (modxZ) the endomorphisrasing)e’” is invertible. This implies the equivalence
of (a), (b) and (B. Let X andY be V-parallel local vector fields. Ther{€X and €’y are
v?-parallel, by the definition o¥?, and hence

7% x,&y) = —[e"/ X, y].

This yields (b} (c) and () < (). For av-parallel local one-formé andX, Y as above,
we compute

doe )&/ x, & y)=—-£ [ X, Y]) + &/ xE(Y) — &7 XE(X)
_é(e—e‘/[ee‘])(7 e@.] Y])

since the function§(X) andé (Y) are constant. This proves the equivalences{dd) and
(¢) & (d), completing the proof of the proposition. O

Given a complex manifoldM, J) with a flat connectiorv, we say that the connection
VT2 =y g v gy

is its conjugate connection

Corollary 1. Let(M, J) be a complex manifold with a flat torsionfree connectioithen
the following are equivalent:
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(@) (M, J, V) is a special complex manifold.

(b) The conjugate flat connectidi'’) is torsionfree.

(c) [IX, JY] = Ofor all V-parallel local vector fieldsx andY on M.
(d) d(& o J) = Ofor all V-parallel local one-formg on M.

Corollary 2. If (M, J,V) is a special complex manifold thei/, J, V?) is a special
complex manifold forarg. If (M, J, V, w) is a special Kahler manifold the@/, J, V¢, w)
is a special Kéhler manifold for an.

The Proposition 2 shows that any special complex manifold also has a canonical torsionfree
complexconnection, which in general is not flat.

Proposition 2. Let (M, J, V) be a special complex manifold. Then= %(V + v
defines a torsionfree connection such that-D0.

Proof. As a convex combination of torsionfree connectialss a torsionfree connection.
For any vector field{ on M we compute

1
DxJ =VxJ — E[JVxJ, J]=VxJ —VxJ=0. [l

Proposition 3. Let (M, J, V, w) be a special Kahler manifold with special Kéhler metric
g and Levi-Civita connectio¥$. Then the following hold:

() V8 =D =3(V+V).
(i) The conjugate connectiov'’) is g-dual tov, i.e.

Xg(Y, Z) = g(VxY., Z) + g(¥. V' Z)

for all vector fieldsX, Y andZ on M.
(iii) The tensoiV g is completely symmetric.

Proof. Part (i) is an immediate consequence of Proposition 2, sgnee w(-, J-). Part
(ii) follows from a direct computation, which only uses the fact thas V-parallel and
J-invariant:
Xg(Y, Z) = X (Y, I2) = o(VxY,I2) + (Y, VxJ2)
= ¢(VxY, Z) + 0QY, JVxJID) = g(VxY, Z) + g(¥, V{ 7).
Finally, to prove (iii) it is sufficient to check thatg is symmetric in the first two arguments:
(Vxg)(Y, Z) — (Vyg)(X, Z)

= —g(VxY, 2) + g(VY, 2) + g(Vv X, 2) — g(V\ X, Z)
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Proposition 4. Let(M, J, V, ) be a special symplectic manifold and= w1+ 2%+ 02
the Hodge decomposition of the symplectic form. Then each of the compoh&nt&?,
«%? are closed.

Proof. Itis sufficient to check that the (1, 1)-componedt = (1/2)(w + w(J-, J+)) is
closed. Sincé& has no torsion, the exterior derivative is given by=alto V. We compute

2do™ = d(@ + o(J-, J)) = alto Vo (J-, J-).

SinceVe = 0 for any X1, X», X3 € T, M we obtain, using 47 =0,

1

2dw(X1, X2, X3) = 3@((Vx,)) X2, %) + (X, (Vx,.J) X3) + cycl)
1

= 3@((Vx; ) X2, %) + 0, (Vxy ) X1) + cycl),

= %(a)((VXlJ)Xz, IX3) — w((VxyJ)X1,IX) +cycl.) =0. O

Proposition 5. Let(M, J, V, ) be a special symplectic manifold and assume #dtis
non-degenerate. TheéM, J, o) is a Kahler manifold with Kahler metrig = w1(J-, -).
(M, J,V, o) is special Kahler if and only iVw!! = 0.

Proof. Itis clear thafg is a Hermitian metric on the complex manifdlsiZ, J). By Propo-
sition 4 the Kahler formw!! of g is closed and, hence)M, J, g) is a Kahler manifold. The
last statement is obvious. O

2.2. Special coordinates

A flat torsionfree connectioW on a manifoldM defines on it araffine structurei.e.
an atlas with affine transition functions. A (local) functiginon (M, V) is called affine if
Vdf = 0. Alocal coordinate syste(rxl, ..., x™onM,m =dim M, is called affine if the
x' are affine functions. Any affine local coordinate systerh . .., x™) defines a parallel
local coframe(dx?, ... , dx™). Conversely, since any parallel one-formss locally the
differential of an affine functionf, given a parallel coframéx?, . .., ™) defined on a
simply connected domaibi M there exist affine functions’ on U such that d’ = «'.
The tuple(x?, ..., x™) defines an affine local coordinate system near each pomtl.
This coordinate system is unique (as a germ, i.e. up to restrictions of the coordinate domain)
up to translations ifR™. If we require in addition that the coordinate system is centred at
p € U, i.e.thatx’(p) = 0, then it is uniquely determined.

Definition 2. Let (M, J, V, w) be a special symplectic manifold. ®&-affine local coor-

dinate system[xl, ..., x", y1,...,y,) on M is called a real special coordinate system if
o =2) dx' A dy;. A conjugate pair of special coordinates is a pair of holomorphic local
coordinategz?, ..., z%) and(wz, ..., w,) such thatix! = Rez!, ..., x" = Rez", y; =

Rews, ..., y, = Rew,) is a real special coordinate system.
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Theorem 1.

(i) Any special symplectic manifold?, J, V, w) admits a real special coordinate system
near any pointp € M. A real special coordinate system is unique up to an affine
symplectic transformation.

(i) Any affine local coordinate systent, ..., x", y1, ..., y,) on aspecial complex man-
ifold admits a holomorphic extension, i.e. there exist holomorphic functicersdw ;
with Rez’ = x' andRew; = y;. The extension is unique up (purely imaginary
translations.

(iii) Near any point of a special Kéhler manifold there exists a real special coordinate sys-
tem which admits a holomorphic extension to a conjugate pair of special coordinates.

Proof. The existence and uniqueness statements about real special coordinate systems are
obvious. Let(x1,...,x", y1,..., y,) be an affine local coordinate system on a special
complex manifold. Then we defing := dx’ — «/—1J*dx’. By Corollary 1,/*dx’ =

dx’ o J is closed. This implies thab’ are closed one-forms of type (1, 0) and are hence
closed holomorphic one-forms. So there exist local holomorphic functicgh thaty' =

dz’. By adding real constants we can arrange that'Re x’. Similarly, there exist local
holomorphic functionsy; such that Rev; = y;. The uniqueness statement concerning this
holomorphic extension is obvious. We claim that in the case of special Kéhler manifolds,
real special coordinates can be chosen such that #head well as thew;, are linearly
independent (over). To see this, let us first observe that the dnd dy; define a Lagrangian
splitting of 7; M with respect tao—1 for any pointp in the coordinate domairf; M =
Ly®L,,whereL, = spardx?, ..., dx"} andL, = spar{dyz, ..., dy,}. TheJ-invariance

of the symplectic (Kahler) fornm implies the existence of a Lagrangian splitting of the
formT*M = L @ J*L. Since any two Lagrangian splittings of a symplectic vector space
are related by a linear symplectic transformation, this shows that the real special coordinates
x1, ...y, nearp can be chosen such that the corresponding Lagrangian subdpades
satisfyL, N J*L, = L, N J*L, = 0 at the pointp, and hence on a coordinate domain
containingp. The equatior., N J*L, = 0 forces the ¢ = dx! — /—1J*dx’ to be
linearly independent. So thé define local holomorphic coordinates on the special Kahler
manifold. Similarly, as a consequence of the equafigm J*L, = 0, thew; are local
holomorphic coordinates. O

2.3. The extrinsic construction of special manifolds

As in [4], we consider the following fundamental algebraic data: the complex vector
spaceV/ = T*C" = C?* with canonical coordinatas?, ..., 2, ws, ..., w,) and standard
complex symplectic form2 = Y"7_; dz’ A dw;, the standard real structure: V — V
with fixed point setV® = T*R". Theny = v/—1£2¢(, t-) defines a Hermitian form of
(complex) signaturén, n).

Let M be a connected complexfold. A holomorphic immersionp : M — V is
callednon-degeneratéespectivelylLagrangiar) if ¢*y is non-degenerate (respectively, if
¢*$2 = 0). If ¢ is non-degenerate, therty defines a, possibly indefinite, Kéhler metric
g (i.e. Rep*y) on the complex manifold/. The correponding Kéhler form(-, J-) is a
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J-invariant symplectic form o/, whereJ denotes the complex structure Mf. Here,¢
is calledtotally complexf VF Nd¢ T,M = Oforall p € M.

Lemma 2. A holomorphic immersiop : M — V is totally complex if and only if its real
partRe¢ : M — VT is animmersion.

Proof. Let¢ : M — V be a totally complex holomorphic immersion. Restricting, i.e.
pulling back viag, the functions:’ := Rez’ andy; := Rew; to M we obtain 2 functions
onM with everywhere linearly independent differentials. Infactylet Y a; dx'+)_b/y;

be areal linear combination which vanishes on the compldimensional linear subspace
d¢ T,M C V.Then, since is real, it must also vanish and ¢ 7, M. Now we can conclude
thata = 0, since, by our assumption gnde T,M Ntdp T,M = V' Ndep T,M @ iV* N
d¢ T,M = 0 and, thereforey = d¢ T,M & t dp T, M. This shows that the functions
andy; restrict to local coordinates aif and, hence, that Regis an immersion. Conversely,
let¢ : M — V be a holomorphic immersion such that®®e M — V7 is an immersion.
We have to show tha¥* Nd¢ T,M = O for all p € M. Suppose, thak € T,M and
dp¢ X € V. Then we have that &= Imd¢ X = —Re/—1dp X = —RedpIX. This
implies thatJX = 0, because dRg = Re dy is injective. This shows that = 0 proving
VindgT,M =0. O

A holomorphic totally complex immersiog induces a flat torsionfree connection on the
real tangent bundle @ff as follows. Since Re is animmersion, by Lemma 2, restricting the
functionsx’ = Rez’ andy; = Rew; to M we obtain local coordinates, which induce a flat
torsionfree connectio® on M. Moreover, 2 dx' Ady; restricts to & -parallel symplectic
form w on M. We callV andw the induced connection and the induced symplectic form,
respectively. Now we can easily prove this.

Theorem 2. Let ¢ be a totally complex holomorphic immersion of a complex manifold
(M, J)intoV = T*C",n = dim¢ M, V theinduced connection aad= 2¢*(>_ dx Ady;)
the induced symplectic form. Then the following hold:
(i) (M, J,V,w)is aspecial symplectic manifold.
(i) The pull back viap of the functionér! = Rezl, ..., x" = Rez", y1 = Rews, ...,
y» = Rew,) of V defines a real special coordinate system around each poiht.of

Proof. We have to prove that¥J = 0. By Corollary 1, it is sufficient to check that the
one-forms @' o J and dy; o J are closed. This follows immediately from the fact that the

one-forms d' = dx’ —/=1dx' o J and dv; = dy; —+/—1dy; o J areclosed. O

The next proposition clarifies the relation between the three notions defined above.
Proposition 6. Let¢ be a holomorphic immersion of a complefold M into V. = T*C".
The following conditions are equivalent:

() ¢ is Lagrangian and non-degenerate.
(i) ¢ is Lagrangian and totally complex.
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Theorem 3. Let¢ be a holomorphic non-degenerate Lagrangian immersion of a complex
manifold (M, J) into V inducing the Kahler metrig on M. The immersior is totally
complex, and hence induces also the dataw) on M. Moreover, the following hold:

() (M, J,V,w)is aspecial Kdhler manifold.
(i) w coincides with the Kahler form gf, i.e.0 = g(-, J-).
(iii) The pull back via of the canonical coordinates?, . . ., 2, w1, ..., w,) of V defines
a conjugate pair of special coordinates around each pointof

Proof. Thanks to Proposition 6 and Theorem 2 it is sufficient to proveghat/-) = w =
20*(>_dx' A dy;). A straightforward computation, which only uses the definitiorg of
shows that

2¢(,J) =w+ JFo. 4)
On the other hand, singgis Lagrangian, we know also that

0=2Rep*2 = w — J*w.
This implies thag (-, J-) = w. a

Now we will show that any simply connected special (complex, symplectic or Kahler)
manifold arises by the construction of Theorems 2 or 3

Theorem 4.

(i) Let(M, J, V) be a simply connected special complex manifold of complex dimension
n. Then there exists a holomorphic totally complex immergiol — V = T*C"
inducing the connectiolv on M. Moreover ¢ is unique up to an affine transfor-
mation of V preserving the real structure. Here, the real structure is considered
as a(constany field of antilinear involutions on the tangent spacesVofFinally,

o = 2¢*(Y_ dx! Ady;) is aV-parallel symplectic structure defining ¢, J, V) the
structure of special symplectic manifold.

(i) Let(M, J,V,w) be a simply connected special symplectic manifold of complex di-
mensiom. Then there exists a holomorphic totally complex immergiodd — V =
T*C" inducing the connectiolv and the symplectic forn» on M. Moreover ¢ is
unique up to an affine transformation Bfpreserving the complex symplectic fofin
and the real structure.

(iii) Let(M, J, V, w) be asimply connected special Kéhler manifold of complex dimension
n then there exists a holomorphic non-degenerate Lagran@ad hence totally com-
pleX immersionp : M — V = T*C" inducing the Kahler metrig, the connection
V and the symplectic form = 2¢*(>_dx’ A dy;) = g(-, J-) on M. Moreoverg is
unique up to an affine transformation Bfpreserving the complex symplectic fofin
and the real structure . Here the real structure is considered as a field of antilinear
involutions on the tangent spaceslof

Proof. We prove (ii) and (iii). The proof of (i) is similar. By Theorem 1 there exist real
special coordinates near each poinkbfSinceM is simply connected, we can choose these
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local coordinates in a compatible way obtaining globally defined functiérend y; on

M suchthaix®, ... x" yi,..., y,) is areal special coordinate system near each point of
M. Then again by Theorem land the simple connectedne®#swé can holomorphically
extend these functions, i.e. there exist globally defined holomorphic funcficarsd w;
such that Re' = x' and Rew; = y;. Moreover, if(M, J, V, w) is special Kahler we
can assume that?, ..., z", wy, ..., w,) form a conjugate pair of special coordinates. We
define the holomorphic map

qb::(zl,...,z",wl,...,wn):M—>(C2":V.

The fact thatp is a totally complex immersion follows from the linear independence of
(dx?, ..., dx", dys,...,dy,). This proves the existence statement in (ii). To prove (iii) we
need to check thap is Lagrangian, i.e. that the holomorphic two-forms:= " dz' A

dw; = 0. Thisfollows fromthe/-invariance ofv = 2) dx/ Ady;,since2Re2 = w—J*w
and2im2 =J -0 =2 Jdx' A dy; +2Y Jdy; A dx'. Here the dot-j stands for the
natural action ofjl(E) on A2E*, whereE = T,M, p € M. The uniqueness statement is
a consequence of the uniqueness statement in Theorem 1. O

We will call a holomorphic one-form3_ F; dz' on an open subsdf c C" regular
if the real matrix IM(@F; /dz/) is invertible. A holomorphic functionF on U is called
non-degenerat# its differential dF is a regular holomorphic one-forms. Any holomorphic
one-formsp on a domairl/ ¢ C" can be considered as a holomorphic immersion

¢:U—>V=T"C"
So it makes sense to speak of totally complex or Lagrangian holomorphic one-forms.

Lemma 3. Let¢ be a holomorphic onéorms. Then the following hold:

(i) ¢ is totally complex if and only if it is regular.
(i) ¢ is Lagrangian if and only if it is closed.

Proof. Part (ii) is a well known fact from classical mechanics. To see (iplet 3 F; d7’
be a holomorphic one-forms on a domainC C". It is totally complex if and only if the
form (1/2)w = ¢*(3_ dx' A dy') is non-degenerate dii. We compute

1 ; IF\ |, . IF\ | :
§w=de A dReF; =Z<Reg> dx’ A dx/ —Z(Im @) dx’ A du.

From this it is easy to see thatis non-degenerate if and only if the matrix (8F; /dz/) is
invertible, i.e. if and only ifp is regular. O

The following is a corollary of Lemma 3, Theorems 2 and 4.

Coroallary 3. Anyregularlocal holomorphic onormsg onC” defines a special symplectic
manifold of complex dimensien Conversely, any special symplectic manifold of complex
dimensiom can be locally obtained in this way.
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Coroallary 4. Any non-degenerate local holomorphic function@hdefines a special Kah-
ler manifold of complex dimensien Conversely, any special Kéhler manifold of complex
dimensiom can be locally obtained in this way.

Proof. A non-degenerate holomorphic functidrdefines aregular and closed holomorphic
one-formsdF. The corresponding holomorphic immersipnr= dF is totally complex and
Lagrangian (by Lemma 3) and, by Proposition 6, non-degenerate. So it defines a special
Ké&hler manifold by Theorem 3. The converse statement follows from Theorem 4 and the
fact that any holomorphic non-degenerate Lagrangian immersiotVimdocally defined

by a regular closed holomorphic one-forms (after choosing an appropriate isomorphism
V = T*C"). Notice that every regular closed holomorphic one-forms on a simply connected
domain is the differential of a non-degenerate holomorphic function. a

3. Projective special geometry
3.1. Conic and projective special manifolds

We recall that docal holomorphicC*-actionon a complex manifold/ is a holomorphic
map

C*xM>O,pr—o(p)eM
defined on an open neighbourhoBtof {1} x M such that

(i) ¢1(p) = pforall p e M and
(i) ¢5.(¢u(p)) = @au(p) if both sides are defined, i.e.(, ¢, (p)) € W and (A, p) €
W.

From this definition it follows that for every € M there exist open neighbourhootls
of 1 € C* andU, of p such thatU; x U, C W andg;|U, is a diffeomorphism onto its
image for allx € U1. We will say that an equation involving, holdslocally if it holds on
any open set/ ¢ M on whichg; is defined and on which it is a diffeomorphism onto its
image. Of course, even if it is not explicitly mentioned, an equation involyjnig always
meant to hold only locally.

We use polar coordinates, 0) to parametris€* = {» = ré?|r,0 € R,r > 0} and
consider as a map fronC* toR/2r Z.

Definition 3.

(i) Let (M, J, V) be a complex manifold with a flat torsionfree connection. It is called a
conic complex manifoli it admits a local holomorphi€*-actiong, such thatlocally
dg;. X = ré?/ X = r(cosf)X + r(sing)JIX for all V-parallel vector fieldst, where
r=re?.

(ii) A conic symplectic manifold is a conic complex manifalsf, J, V) together with a
parallel symplectic fornw.

(iii) A conic symplectic manifold(M, J, V, w) is called a conic Kahler manifold i is
J-invariant.
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Notice that the conditiong, X = r&’’/ X for all V-parallel vector fieldsX implies that
0

Proposition 7.

(i) Any conic complex manifold is a special complex manifold.
(i) Any conic symplectic manifold is a special symplectic manifold.
(iii) Any conic Kahler manifold is a special Kéhler manifold.

Proof. Let (M, J, V) be a conic complex manifold arg the corresponding local action.
Sinced"J = 0 is a local condition, it is sufficient to prove that any poine M has an
open neighbourhooll such that U, J, V) is a special complex manifold. By Proposition
1 it is sufficient to check that for any poipt € M there exist open neighbourhoots of

1 € R/2rZandU, of p such thav? is a torsionfree connection ), for all & € Us. From
the definition of local action it follows that for any € M there exist open neighbourhoods
Ui 0fl e R/2nZandU, of p such thalp, is defined orU,, andy;.|U,, is a diffeomorphism
onto its image for alk. = €¢ with @ € U1. Since(M, J, V) is a conic complex manifold
we haveV? = pyvonU, forall§ € Us. Thus, V? is a torsionfree connection atp,
proving (i). Statements (ii) and (iii) follow easily from (i). O

Theorem 5.

() Let(M, J, V)be acomplex manifold with a flattorsionfree connection. TiénJ, V)
is a conic complex manifold if and only if there exists a local holomorfitii@action
¢, and for everyp € M holomorphic functions?, ..., z" andws, ..., w, defined
near p such that

a) ' o @ = Az andw; o ¢ = Aw; near p and
J J
(b) x! := Rez!, ..., x" := Rez", y1 := Rewx, ..., y, := Rew, are affine local
coordinates neap.

(i) Let (M, J,V,w) be a complex manifold with a flat torsionfree connection and a
parallel symplectic form. ThefM, J, V, ) is a conic symplectic manifold if and only
if there exists a local holomorphi€*-action ¢, and for everyp € M holomorphic
functionszt, ..., z* andwy, . .., w, defined neap such that

(@) 7 op = Az andw; o 9, = Aw; near p and
(b) x1 := Rez!, ..., x" := Rez", y1 := Rews, ..., y, := Rew, are affine local
coordinates neap.

Moreover if (M, J, V, w) is a conic(specia) symplectic manifold then the local
holomorphic functiong and w; can be chosen such that their real partsand y;
form a real special coordinate system.

(iii) Let (M, J,V,w) be a complex manifold with a flat torsionfree connection and a
parallel J-invariant symplectic form. ThefM, J, V, ») is a conic Kahler manifold
if and only if there exists a local holomorph€*-action ¢, and for everyp € M
holomorphic functions?, ..., z* andws, ..., w, defined neap such that
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(@) 7 op = Az andw; o ¢, = Aw; near p and
(b) x1:=Rezl, ..., x" := Rez", y1 := Rews, ..., y, := Rew, are affine local
coordinates neap.

Moreover if (M, J, V, w) is a conic(specia) Kahler manifold then the local holo-
morphic functiong’ andw; can be chosen such that they form a conjugate pair of
special coordinates.

Proof. We prove only (i). Parts (ii) and (iii) are proven similarly. L@, J, V) be a conic

complex manifold andl, ... x", y1, ..., y, affine local coordinates on it. By Proposition
7 and Theorem 1 it is a special complex manifold and the affine local coordinates admit
a holomorphic extensiort, .. ., 2, w1, ..., w,. From dp, X = ré’’ X for all V-parallel

vector fields it follows that’ o ¢, = Az’ + c¢(1), wherec : C* — C” is a smooth map.
Sincey; is a local action, the mapmust satisfy the functional equation

c(Ap) = re(p) +c(d)

forall A, u € C* near 1e C* andc(l) = 0. It is easy to see that this impliesh) =

(1— A)zo for some constant vectag € C". Up to adding (real) constants to thg we can
assume that the vectgy has purely imaginary components. Then changing the holomorphic
extensiong’ by adding purely imaginary constants, we can arrangecteatg = 0 and,
hence, that’ o ¢; = Az'. Similarly, we can show that by adding constants one can arrange
thatw; o ¢, = Aw;. This shows that a conic complex manifold admits a local holomorphic
C*-action and local holomorphic functions with the properties (a) and (b). Next, we prove
the converse statement of (i). So¢etbe a local holomorphi€*-action on(M, J, V) and

z4, ..., 72" w1, ..., w, local holomorphic functions satisfying (a) and (b). From (a) and (b)
it follows that dp; X = re’/ X for all V-parallel vector fieldsX, by differentiation. This
shows thatM, J, V) is a conic complex manifold. O

Next, we are going to define the notion of projective special (complex, symplectic or Kahler)
manifold. These manifolds arise as orbit spaces of conic special (complex, symplectic or
Kéahler) manifolds. Lep, be a local holomorphi€*-action on a complex manifoldf. To

any pointp € M we associate the holomorphic curg€p) : A — ¢, (p) in M defined

on an open neighbourhood ofd C*. If ¢, is the localC*-action associated to a conic
complex manifold therp(p) is an immersion and, = ¢(p) 1C* C T,M defines

an integrable complex one-dimensional holomorphic distributiodorits leaves are by
definition theorbits of the localC*-actiong,. We denote byW = M /C* the set of orbits

with the the quotient topology will be called the orbit space aoff. If M is a conic
(complex, symplectic or Kahler) manifold and the projectidn— M is a holomorphic
submersion onto a Hausdorff complex manifold, thinis called aprojective special
(complex, symplectic or Kéhlerhanifold

3.2. Conic special coordinates

Definition 4. An affine local coordinate systertx, y) = (x1,...,x" y1,...,y,) On
a conic complex manifold(M, J, V) with corresponding locaC*-action ¢, is called
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a conic affine local coordinate system if it admits a holomorphic extengiom) =
(z, ..., 2" w1, ..., wp) such that locally(z, w) o ¢, = A(z, w). Such a holomorphic
extension is called a conic holomorphic extension.

In view of Definition 4, we will freely speak of conic real special coordinate systems
(x, y) on conic symplectic manifolds and of conic conjugate pairs of special coordinates
(z, w) on conic Kéahler manifolds. The following theorem is a corollary of Theorem 5.

Theorem 6.

(i) Any conic complex manifold admits a conic local affine coordinate system near any
point p € M. A conic local affine coordinate system is unique up to a linear transfor-
mation.

(i) Any conic symplectic manifold admits a conic real special coordinate system near
any pointp € M. A conic real special coordinate system is unique up to a linear
symplectic transformation.

(i) Any conic Kahler manifold admits a conic conjugate pair of special coordinates.
A conic conjugate pair of special coordinates is unique up tc@mpleX linear
symplectic transformation.

3.3. The extrinsic construction of conic and projective special manifolds

Let us consider the same fundamental déta2 and t as in Section 2.3. O¥ we
have the standard (global) holomorphit-actionC* x V > (A,v) +> Av € V. A
holomorphic immersiog of a complex manifoldV into V is calledconicif for every
point p € M and every neighbourhootl of p there exist neighbourhood$; of 1 €
C* and U, of p such that¢ (U,) C ¢(U) for all A € Uz. Notice that we do not re-
quire the imagep (M) to be a complex cone, i.e. (globally) invariant under @feaction
onv.

Theorem7. Let¢ be aconic totally complex holomorphic immersion of a complex manifold
(M, J)intoV = T*C",n = dim¢ M, V theinduced connection aagd= 2¢*(>_ dx’ Ady;)
the induced symplectic form. Then the following hold:

(i) (M, J,V,w) is aconic symplectic manifold.

(i) The pull back viag of the functions(x! = Rez!,...,x" = Rez’,y
= Rews, ..., y, = Rew,) of V defines a conic real special coordinate system around
each point ofM.

Proof. Since¢ is a conic holomorphic immersion, the holomorplil¢-action onV in-
duces a local holomorphi€*-actiong, on M. One can easily check thaj defines on
(M, J, V, o) the structure of a conic symplectic manifold with conic real special coordinates

xlo¢,...,x"o¢,ylo¢,yno¢. O

Theorem 8. Let ¢ be a conic holomorphic non-degenerate Lagrangian immersion of a
complex manifoldM, J) into V inducing the Kéhler metrig on M. The immersior is
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totally complex, and hence induces also the dataw) on M. Moreover, the following
hold:

(i) (M, J,V,w)is aconic Kahler manifold.
(ii) o coincides with the K&hler form ¢f, i.e.w = g(-, J-).

(iii) The pull back via of the canonical coordinates?, .. ., z”, w1, ..., w,) of V defines
a conic conjugate pair of special coordinates around each poi of
Proof. This follows from Theorems 3 and 7. O

Now we will show that any simply connected conic (complex, symplectic or Kéhler)
manifold arises by the construction of Theorems 7 or 8.

Theorem 9.

(i) Let(M, J, V) be a simply connected conic complex manifold of complex dimension
n. Then there exists a conic holomorphic totally complex immergiodd — V =
T*C" inducing the connectioW on M. Moreover ¢ is unique up to a linear trans-
formation of V preserving the real structure. Here, the real structure is considered
as a (constant) field of antilinear involutions on the tangent spaceg. dfinally,
w=20*_ dx! Ady;) is aV-parallel symplectic structure defining ¢M, J, V) the
structure of conic symplectic manifold.

(i) Let(M, J, V, w) be a simply connected conic symplectic manifold of complex dimen-
sionn. Then there exists a conic holomorphic totally complex immergion/ —

V = T*C" inducing the connectioW and the symplectic forma on M. Moreover ¢
is unique up to a linear transformation &f preserving the complex symplectic form
£2 and the real structure.

(i) Let(M, J, V, w) be a simply connected conic Kahler manifold of complex dimension
n then there exists a conic holomorphic non-degenerate Lagrangian (and hence totally
complex) immersiop : M — V = T*C" inducing the Kéhler metrig, the connec-
tion V and the symplectic form = 2¢*(>_ dx’ Ady;) = g(-, J-) on M. Moreover ¢
is unique up to a linear transformation &f preserving the complex symplectic form
£2 and the real structure. Here, the real structure is considered as a field of antilinear
involutions on the tangent spacesiof

Proof. The proofis completely analogous to that of Theorem 4. To prove (ii), for instance,
itis essentially sufficient to replace real special coordinates by conic real special coordinates
in the proof of Theorem 4 (ii). O

We will call a holomorphic one-form3_ F; dz' on an open subsét c C" conicif the
corresponding holomorphic immersiéh > z > Y Fi(z)dz' € T)C" C T*C" = V is
conic. This is the case if and only if the functiofis are locally homogeneous of degree
one, i.e. ifF;(Az) = AF;(z) forall z € U and allx near 1€ C*.

A holomorphic functionF on U is calledconicif its differential dF is conic. This is the
case if and only ifF is locally homogeneous of degree 2, i.eFifrz) = A2F(z) for all
z € U and allx near 1e C*.

We have the following analogues of Corollaries 3 and 4.
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Corollary 5. Any conic regular local holomorphic offerms ¢ on C" defines a conic
symplectic manifold of complex dimensiarConversely, any conic symplectic manifold of
complex dimension can be locally obtained in this way.

Corollary 6. Any conic non-degenerate local holomorphic functior{t@rdefines a conic
Kéahler manifold of complex dimensianConverselyany conic Kahler manifold of complex
dimensiom can be locally obtained in this way.

Remark 3. Let M = M/C* be a projective special (complex, symplectic or Kahler)
manifold, with M simply connected. Then the holomorphic immersibn M — V
constructed in Theorem 9 induces a holomorphic immergionM — P (V) into the
complex projective space of complex dimensian-21. The holomorphic immersion is
unigue up to a projective transformation induced by a linear symplectic transformation of
V preserving the real structute To construct it is sufficient to assume that is simply
connected.

4. Geometric structures on the cotangent bundle of special symplectic manifolds

In this section, we prove that the cotangent bundle of a special symplectic manifold
carries two canonical complex structurés Jo. Moreover, if the (1, 1)-part of the sym-
plectic formw is non-degenerate it also carries an almost hyper-Hermitian structure. This
almost hyper-Hermitian structure is hyper-Kahler if and onlyift is parallel. If the
(2, 0)-part of w is non-degenerate we obtain an almost para-hypercomplex structure. It
is para-hypercomplex if and only #®2° is parallel. This generalises the known con-
struction of a hyper-Kahler metric on the cotangent bundle of a special Kahler manifold
[2,4,7,8].

Let M be a manifold and denote by = T*M its cotangent bundle. A connecti®hon
M defines a decomposition

TeN=H @TN=T,M&T;M, &cN, p=nu(), (5)

wherer : N = T*M — M, T’ N is the vertical subspace arfdy is the horizontal
subspace defined by the connectidnHere, we have a natural identificationQTN with

T;M and an identification dﬁg with 7, M defined by the projection. If M is a complex
manifold with complex structurd, then N carries a natural complex structufg. We
note that the vertical subspaﬂng is Jy-invariant, but the horizontal subspaﬂg isin

general not. We denote b¥" the almost complex structure avi defined with respect to
the decomposition (5) by

o (70
! _<0 J* ©)

In general/V is not integrable.
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Proposition 8. Let V be a connection on a complex manifgl#f, /). The horizontal
distribution %V < TN is Jy-invariant if and only if there exists a torsionfree complex
(i.e. DJ = 0) connectionD on M such that the tensor field := V — D satisfies the
condition

A oJ = A5 VX eTM, @)
whereAS Y = £(AxY).
For the proof we need two lemmas. The first one is well known.

Lemma 4. Let D and V be connections on a manifold and A = V — D. Then the
corresponding horizontal distributior’¥? and#" are related by

HY = AP = (D =v+ ASjv e HP = T, M},
where§é e N = T*M andp = 7 (§).

Lemmab. LetV be atorsionfree complex connection on a complex manifdld/). Then
the horizontal distributiortY < TN is Jy-invariant and hencdV = Jy.

Proof. Let(xY, ..., x", yX, ..., y" u1,...,un, v1,...,v,) bethelocal coordinate system
on N = T*M associated to a holomorphic local coordinate system. . ., z*) on M, i.e.

7 =x+/-1yl andw = Y dx’ Adu; + > dy/ A dv; is the canonical symplectic
structure onV. Note that

—_— 0 0 0 Bl
TN = span{ —, .. )
duq

st

Cou, vy vy

We denote byD the local connection ol with horizontal space

d a 9 0
HP :=span{ —, ..., —, —, ..., — 1.
P { ax1 axn’ gyl ayn }
This connection is flat and torsionfree, with affine local coordinatés. .., x",
yl,....y". It is also complex because the complex structuirés constant in these
coordinates:
a 9 a 9
axi — ayi’ ayl  oaxi’
In terms of the induced coordinate systemMnJy is given by
o _ 90 0 8,0 I
Noxt —aym Nou;, — ov; Moyl T ax Nov,  oug

This clearly shows thai? = Jy. Now let V be any torsionfree complex connection on
(M, J). This means that thel, 2) tensorA = V — D is symmetric and/-linear, i.e.

AXYszX, [Ax,J]ZO VX,YGTM.
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The latter equation can also be written in the fofr’mi = Af?g forall¢ e T*M. We
claim that this implies thgy-invariance of{¥ = AHP. In fact we have

IND=In@+AS) = v+ T AS = v+ AT = v+ A0 = Jv + TH(AS

:Jv—l—AéJv:Jv—i—Aiv:j;} VUGHED%TPM, p=n&)eM. O

Proof (of Proposition 8). LeD be atorsionfree complex connection@nandV a connec-
tion onM such thatd = V — D satisfies (7). To prove th&t" is Jy-invariant it suffices to
check that/y 9 = Jv for all v € 7—[? = T, M. Using the identification (5) and the identity
(7) we compute

IND = In@+ A =Jv+J A = v+ AS o J = Ju+ A = du.

Conversely, le¥ be a connection oif such tha#{" is Jy-invariant. From the integrability
of J itfollows that there exists a torsionfree complex conneciimn M . Now we check that

IvHY = #HY implies (7). Forb = v+ Aj € HY, we have by Lemma 5y = Jv+J* A},
This shows that/yv € ’H)Z if and only if Jy0 = Jv. The latter equation is equivalent to
T*AS = Aﬁv, which is precisely (7). 0

Now letw be a field of non-degenerate bilinear forms on a manifélc¢onsidered as a map
T™M — T*M, andV a connection ord/. Using the identification (5) we define an almost
complex structurd® onN = T*M by

0 -t
o _ 8
) (w : ) ®

Lemma6. If V is flat and torsionfree ana isV-parallel thenJ® is integrable.

Proof. If we express/® in terms of the canonical coordinates &h = 7*M induced
by local affine coordinates oM, then it has constant coefficients. This shows tHais
integrable. |

Theorem 10. Let(M, J, V, w) be a special symplectic manifold. Then the cotangent bundle
N = T*M carries two natural complex structures

J 0 0 —w?
]1=JV= and o =J?= .
o J* o 0

The commutator and anticommutator.afand J, are given by

0 _(a)—l)ll 0 _(w—l)ll
[J1, 2] =271 JRTI =-2 RTINS J1,
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(0 _(wl)/> (0 _(wl)/>
{J1, )2} =2/1 =2 J1,
o 0 o 0

whereo’ = 0?0 4+ »%2.

Proof. The integrability ofJ, follows from Lemma 6. To prove the integrability @f, by
Proposition 8, it is sufficient to check the identity (7) for=V — D = (1/2)J VJ, where

D = (1/2)(V + V) is the torsionfree complex connection of Proposition 3. Using the
fact thatVJ is symmetric we compute

2AxoJ =J(VxJ)oJ =VxJ=(V- )X = J(V - J)IX=J(VixJ)=2Ax. ]

Theorem 11. Let(M, J, V, w) be a special symplectic manifold

(i) Assume thaib'! is non-degeneratéThen the cotangent bund¥e= T*M carries a
canonical almost hyper-Hermitian structu¢éy, Jo, J3 = J1J2 = —J2J1, gn) given

by
h=JY, J=J°" gy=dagg gD,

whereg = w'l(J, -) is the Kahler metric orM, seeProposition 5./1 is the standard
(integrablg complex structure on the cotangent bundle of the complex maiald ).
The almost hyper-Hermitian manifol@d?, J1, J2, J3, gn) is hyper-Hermitiar(i.e. the
almost complex structures, Jo, J3 are integrablg if and only iVw!! = 0. In this
case(M, J1, Jo2, J3, gn) is a hyper-Kéhler manifold

(i) Assume thad’ = w?° + w02 is non-degenerate. Then the cotangent buNdte 7* M
carries a canonical almost para-hypercomplex struciutge J2), i.e. a commuting pair
of almost complex structurggiven by

J=JY, J=J".

Ji is again the standardintegrablg complex structure and/1, J») is an(integrable
para-hypercomplex structugge. J1 and J; is integrablg if and only iVw? = 0.

Note that in the second cadg = J1J2 is not an almost complex structure but an almost
product structure, i.e. an involution.

Proof. Using the identities
J oot = —oo J, Jfodw = o,

where the two-forms11 andw’ are considered as linear mapgl — 7*M, one can check
that J; and J> are anticommuting or commuting almost complex structures in cases (i)
and (ii), respectively. To check thal, is Hermitian with respect to the almost complex
structuregJ1, Jo, J3) in case (i), we compute, := gy o J, as follows:

w1 = — (Zwij dg’ A dg’ +Zwij dp; /\dpj>,
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whereo™ = Y wjj(q) dg’ A dg/ is the expression of the symplectic foro® in V-affine
coordinateg’ on M, (") = (a)ij)*l and thep; are the conjugate momenta corresponding
to theg'.

wy = Z(J* dg/) Adp;, wz= qu-i Adpj.

From these formulas we see that thg are skew-symmetric and therefore that theare
gn-orthogonal. This shows thdt/y, Jo, J3, gn) IS an almost hyper-Hermitian structure.
The formws is closed. The fornw, is closed since &*n = 0 for any parallel one-forms.
The formwy is closed if and only if the coefficients; are constant, i.e. if and only i1
is V-parallel. If this is the case, then the almost hyper-Hermitian stru¢tlyte/o, Js3, gn)
is hyper-Kahler, e.g. by Hitchin’s Lemma.

Assume now thaf? is integrable, i.e. the Nijenhuis tensly, = 0. A direct calculation
shows that

J2N 1, (31, 0,0) = Y (Oiki — Pik.j)9py
k

wherepjj (¢) are the coefficients gf = o or o' in cases (i) or (i), respectively. Notice
that pix ; — pjk,; are the coefficients of the two-form$i§|qkp) = L;;qk,o. This shows that

Ny, (9,i, 9,5) = 0 implies that Lie derivative op in the direction of any parallel vector
field on M vanishes, and hence thais parallel. O
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